十一、參考文獻和Deep Learning學習資源
先是機器學習領域大牛的微博:@余凱_西二旗民工;@老師木;@梁斌penny;@張棟_機器學習;@鄧侃;@大數據皮東;@djvu9……
(1)Deep Learning
(2)Deep Learning Methods for Vision
http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
(3)Neural Network for Recognition of Handwritten Digits[Project]
http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
(4)Training a deep autoencoder or a classifier on MNIST digits
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
(5)Ersatz:deep neural networks in the cloud
(6)Deep Learning
http://www.cs.nyu.edu/~yann/research/deep/
(7)Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凱)
http://vipl.ict.ac.cn/News/academic-report-tutorial-deep-learning-dr-kai-yu
(8)CNN - Convolutional neural network class
http://www.mathworks.cn/matlabcentral/fileexchange/24291
(9)Yann LeCun's Publications
http://yann.lecun.com/exdb/publis/index.html#lecun-98
(10) LeNet-5, convolutional neural networks
http://yann.lecun.com/exdb/lenet/index.html
(11) Deep Learning 大牛Geoffrey E. Hinton's HomePage
http://www.cs.toronto.edu/~hinton/
(12)Sparse coding simulation software[Project]
http://redwood.berkeley.edu/bruno/sparsenet/
(13)Andrew Ng's homepage
http://robotics.stanford.edu/~ang/
(14)stanford deep learning tutorial
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
(15)「深度神經網絡」(deep neural network)具體是怎樣工作的
http://www.zhihu.com/question/19833708?group_id=15019075#1657279
(16)A shallow understanding on deep learning
http://blog.sina.com.cn/s/blog_6ae183910101dw2z.html
(17)Bengio's Learning Deep Architectures for AI
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
(18)andrew ng's talk video:
http://techtalks.tv/talks/machine-learning-and-ai-via-brain-simulations/57862/
(19)cvpr 2012 tutorial:
http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/tutorial_p2_nnets_ranzato_short.pdf
(20)Andrew ng清華報告聽后感
http://blog.sina.com.cn/s/blog_593af2a70101bqyo.html
(21)Kai Yu:CVPR12 Tutorial on Deep Learning Sparse Coding
(22)Honglak Lee:Deep Learning Methods for Vision
(23)Andrew Ng :Machine Learning and AI via Brain simulations
(24)Deep Learning 【2,3】
http://blog.sina.com.cn/s/blog_46d0a3930101gs5h.html
(25)deep learning這件小事……
http://blog.sina.com.cn/s/blog_67fcf49e0101etab.html
(26)Yoshua Bengio, U. Montreal:Learning Deep Architectures
(27)Kai Yu:A Tutorial on Deep Learning
(28)Marc'Aurelio Ranzato:NEURAL NETS FOR VISION
(29)Unsupervised feature learning and deep learning
http://blog.csdn.net/abcjennifer/article/details/7804962
(30)機器學習前沿熱點–Deep Learning
http://elevencitys.com/?p=1854
(31)機器學習——深度學習(Deep Learning)
http://blog.csdn.net/abcjennifer/article/details/7826917
(32)卷積神經網絡
http://wenku.baidu.com/view/cd16fb8302d276a200292e22.html
(33)淺談Deep Learning的基本思想和方法
http://blog.csdn.net/xianlingmao/article/details/8478562
(34)深度神經網絡
http://blog.csdn.net/txdb/article/details/6766373
(35)Google的貓臉識別:人工智能的新突破
http://www.36kr.com/p/122132.html
(36)余凱,深度學習-機器學習的新浪潮,Technical News程序天下事
http://blog.csdn.net/datoubo/article/details/8577366
(37)Geoffrey Hinton:UCLTutorial on: Deep Belief Nets
(38)Learning Deep Boltzmann Machines
http://web.mit.edu/~rsalakhu/www/DBM.html
(39)Efficient Sparse Coding Algorithm
http://blog.sina.com.cn/s/blog_62af19190100gux1.html
(40)Itamar Arel, Derek C. Rose, and Thomas P. Karnowski: Deep Machine Learning—A New Frontier in Artificial Intelligence Research
(41)Francis Quintal Lauzon:An introduction to deep learning
(42)Tutorial on Deep Learning and Applications
(43)Boltzmann神經網絡模型與學習算法
http://wenku.baidu.com/view/490dcf748e9951e79b892785.html
(44)Deep Learning 和 Knowledge Graph 引爆大數據革命
http://blog.sina.com.cn/s/blog_46d0a3930101fswl.html
九、Deep Learning的常用模型或者方法
9.1、AutoEncoder自動編碼器
Deep Learning最簡單的一種方法是利用人工神經網絡的特點,人工神經網絡(ANN)本身就是具有層次結構的系統,如果給定一個神經網絡,我們假設其輸出與輸入是相同的,然后訓練調整其參數,得到每一層中的權重。自然地,我們就得到了輸入I的幾種不同表示(每一層代表一種表示),這些表示就是特征。自動編碼器就是一種盡可能復現輸入信號的神經網絡。為了實現這種復現,自動編碼器就必須捕捉可以代表輸入數據的最重要的因素,就像PCA那樣,找到可以代表原信息的主要成分。
具體過程簡單的說明如下:
1)給定無標簽數據,用非監督學習學習特征:
在我們之前的神經網絡中,如第一個圖,我們輸入的樣本是有標簽的,即(input, target),這樣我們根據當前輸出和target(label)之間的差去改變前面各層的參數,直到收斂。但現在我們只有無標簽數據,也就是右邊的圖。那么這個誤差怎么得到呢?
如上圖,我們將input輸入一個encoder編碼器,就會得到一個code,這個code也就是輸入的一個表示,那么我們怎么知道這個code表示的就是input呢?我們加一個decoder解碼器,這時候decoder就會輸出一個信息,那么如果輸出的這個信息和一開始的輸入信號input是很像的(理想情況下就是一樣的),那很明顯,我們就有理由相信這個code是靠譜的。所以,我們就通過調整encoder和decoder的參數,使得重構誤差最小,這時候我們就得到了輸入input信號的第一個表示了,也就是編碼code了。因為是無標簽數據,所以誤差的來源就是直接重構后與原輸入相比得到。
2)通過編碼器產生特征,然后訓練下一層。這樣逐層訓練:
那上面我們就得到第一層的code,我們的重構誤差最小讓我們相信這個code就是原輸入信號的良好表達了,或者牽強點說,它和原信號是一模一樣的(表達不一樣,反映的是一個東西)。那第二層和第一層的訓練方式就沒有差別了,我們將第一層輸出的code當成第二層的輸入信號,同樣最小化重構誤差,就會得到第二層的參數,并且得到第二層輸入的code,也就是原輸入信息的第二個表達了。其他層就同樣的方法炮制就行了(訓練這一層,前面層的參數都是固定的,并且他們的decoder已經沒用了,都不需要了)。
3)有監督微調:
經過上面的方法,我們就可以得到很多層了。至于需要多少層(或者深度需要多少,這個目前本身就沒有一個科學的評價方法)需要自己試驗調了。每一層都會得到原始輸入的不同的表達。當然了,我們覺得它是越抽象越好了,就像人的視覺系統一樣。
到這里,這個AutoEncoder還不能用來分類數據,因為它還沒有學習如何去連結一個輸入和一個類。它只是學會了如何去重構或者復現它的輸入而已。或者說,它只是學習獲得了一個可以良好代表輸入的特征,這個特征可以最大程度上代表原輸入信號。那么,為了實現分類,我們就可以在AutoEncoder的最頂的編碼層添加一個分類器(例如羅杰斯特回歸、SVM等),然后通過標準的多層神經網絡的監督訓練方法(梯度下降法)去訓練。
也就是說,這時候,我們需要將最后層的特征code輸入到最后的分類器,通過有標簽樣本,通過監督學習進行微調,這也分兩種,一個是只調整分類器(黑色部分):
另一種:通過有標簽樣本,微調整個系統:(如果有足夠多的數據,這個是最好的。end-to-end learning端對端學習)
一旦監督訓練完成,這個網絡就可以用來分類了。神經網絡的最頂層可以作為一個線性分類器,然后我們可以用一個更好性能的分類器去取代它。
在研究中可以發現,如果在原有的特征中加入這些自動學習得到的特征可以大大提高精確度,甚至在分類問題中比目前最好的分類算法效果還要好!
AutoEncoder存在一些變體,這里簡要介紹下兩個:
Sparse AutoEncoder稀疏自動編碼器:
當然,我們還可以繼續加上一些約束條件得到新的Deep Learning方法,如:如果在AutoEncoder的基礎上加上L1的Regularity限制(L1主要是約束每一層中的節點中大部分都要為0,只有少數不為0,這就是Sparse名字的來源),我們就可以得到Sparse AutoEncoder法。
如上圖,其實就是限制每次得到的表達code盡量稀疏。因為稀疏的表達往往比其他的表達要有效(人腦好像也是這樣的,某個輸入只是刺激某些神經元,其他的大部分的神經元是受到抑制的)。
Denoising AutoEncoders降噪自動編碼器:
降噪自動編碼器DA是在自動編碼器的基礎上,訓練數據加入噪聲,所以自動編碼器必須學習去去除這種噪聲而獲得真正的沒有被噪聲污染過的輸入。因此,這就迫使編碼器去學習輸入信號的更加魯棒的表達,這也是它的泛化能力比一般編碼器強的原因。DA可以通過梯度下降算法去訓練。
9.3、Restricted Boltzmann Machine (RBM)限制波爾茲曼機
假設有一個二部圖,每一層的節點之間沒有鏈接,一層是可視層,即輸入數據層(v),一層是隱藏層(h),如果假設所有的節點都是隨機二值變量節點(只能取0或者1值),同時假設全概率分布p(v,h)滿足Boltzmann 分布,我們稱這個模型是Restricted BoltzmannMachine (RBM)。
下面我們來看看為什么它是Deep Learning方法。首先,這個模型因為是二部圖,所以在已知v的情況下,所有的隱藏節點之間是條件獨立的(因為節點之間不存在連接),即p(h|v)=p(h1|v)…p(hn|v)。同理,在已知隱藏層h的情況下,所有的可視節點都是條件獨立的。同時又由于所有的v和h滿足Boltzmann 分布,因此,當輸入v的時候,通過p(h|v) 可以得到隱藏層h,而得到隱藏層h之后,通過p(v|h)又能得到可視層,通過調整參數,我們就是要使得從隱藏層得到的可視層v1與原來的可視層v如果一樣,那么得到的隱藏層就是可視層另外一種表達,因此隱藏層可以作為可視層輸入數據的特征,所以它就是一種Deep Learning方法。
如何訓練呢?也就是可視層節點和隱節點間的權值怎么確定呢?我們需要做一些數學分析。也就是模型了。
聯合組態(jointconfiguration)的能量可以表示為:
而某個組態的聯合概率分布可以通過Boltzmann 分布(和這個組態的能量)來確定:
因為隱藏節點之間是條件獨立的(因為節點之間不存在連接),即:
然后我們可以比較容易(對上式進行因子分解Factorizes)得到在給定可視層v的基礎上,隱層第j個節點為1或者為0的概率:
同理,在給定隱層h的基礎上,可視層第i個節點為1或者為0的概率也可以容易得到:
給定一個滿足獨立同分布的樣本集:D={v(1), v(2),…, v(N)},我們需要學習參數θ={W,a,b}。
我們最大化以下對數似然函數(最大似然估計:對于某個概率模型,我們需要選擇一個參數,讓我們當前的觀測樣本的概率最大):
也就是對最大對數似然函數求導,就可以得到L最大時對應的參數W了。
如果,我們把隱藏層的層數增加,我們可以得到Deep Boltzmann Machine(DBM);如果我們在靠近可視層的部分使用貝葉斯信念網絡(即有向圖模型,當然這里依然限制層中節點之間沒有鏈接),而在最遠離可視層的部分使用Restricted Boltzmann Machine,我們可以得到DeepBelief Net(DBN)。
9.4、Deep Belief Networks深信度網絡
DBNs是一個概率生成模型,與傳統的判別模型的神經網絡相對,生成模型是建立一個觀察數據和標簽之間的聯合分布,對P(Observation|Label)和 P(Label|Observation)都做了評估,而判別模型僅僅而已評估了后者,也就是P(Label|Observation)。對于在深度神經網絡應用傳統的BP算法的時候,DBNs遇到了以下問題:
(1)需要為訓練提供一個有標簽的樣本集;
(2)學習過程較慢;
(3)不適當的參數選擇會導致學習收斂于局部最優解。
DBNs由多個限制玻爾茲曼機(Restricted Boltzmann Machines)層組成,一個典型的神經網絡類型如圖三所示。這些網絡被“限制”為一個可視層和一個隱層,層間存在連接,但層內的單元間不存在連接。隱層單元被訓練去捕捉在可視層表現出來的高階數據的相關性。
首先,先不考慮最頂構成一個聯想記憶(associative memory)的兩層,一個DBN的連接是通過自頂向下的生成權值來指導確定的,RBMs就像一個建筑塊一樣,相比傳統和深度分層的sigmoid信念網絡,它能易于連接權值的學習。
最開始的時候,通過一個非監督貪婪逐層方法去預訓練獲得生成模型的權值,非監督貪婪逐層方法被Hinton證明是有效的,并被其稱為對比分歧(contrastive divergence)。
在這個訓練階段,在可視層會產生一個向量v,通過它將值傳遞到隱層。反過來,可視層的輸入會被隨機的選擇,以嘗試去重構原始的輸入信號。最后,這些新的可視的神經元激活單元將前向傳遞重構隱層激活單元,獲得h(在訓練過程中,首先將可視向量值映射給隱單元;然后可視單元由隱層單元重建;這些新可視單元再次映射給隱單元,這樣就獲取新的隱單元。執行這種反復步驟叫做吉布斯采樣)。這些后退和前進的步驟就是我們熟悉的Gibbs采樣,而隱層激活單元和可視層輸入之間的相關性差別就作為權值更新的主要依據。
訓練時間會顯著的減少,因為只需要單個步驟就可以接近最大似然學習。增加進網絡的每一層都會改進訓練數據的對數概率,我們可以理解為越來越接近能量的真實表達。這個有意義的拓展,和無標簽數據的使用,是任何一個深度學習應用的決定性的因素。
在最高兩層,權值被連接到一起,這樣更低層的輸出將會提供一個參考的線索或者關聯給頂層,這樣頂層就會將其聯系到它的記憶內容。而我們最關心的,最后想得到的就是判別性能,例如分類任務里面。
在預訓練后,DBN可以通過利用帶標簽數據用BP算法去對判別性能做調整。在這里,一個標簽集將被附加到頂層(推廣聯想記憶),通過一個自下向上的,學習到的識別權值獲得一個網絡的分類面。這個性能會比單純的BP算法訓練的網絡好。這可以很直觀的解釋,DBNs的BP算法只需要對權值參數空間進行一個局部的搜索,這相比前向神經網絡來說,訓練是要快的,而且收斂的時間也少。
DBNs的靈活性使得它的拓展比較容易。一個拓展就是卷積DBNs(Convolutional Deep Belief Networks(CDBNs))。DBNs并沒有考慮到圖像的2維結構信息,因為輸入是簡單的從一個圖像矩陣一維向量化的。而CDBNs就是考慮到了這個問題,它利用鄰域像素的空域關系,通過一個稱為卷積RBMs的模型區達到生成模型的變換不變性,而且可以容易得變換到高維圖像。DBNs并沒有明確地處理對觀察變量的時間聯系的學習上,雖然目前已經有這方面的研究,例如堆疊時間RBMs,以此為推廣,有序列學習的dubbed temporal convolutionmachines,這種序列學習的應用,給語音信號處理問題帶來了一個讓人激動的未來研究方向。
目前,和DBNs有關的研究包括堆疊自動編碼器,它是通過用堆疊自動編碼器來替換傳統DBNs里面的RBMs。這就使得可以通過同樣的規則來訓練產生深度多層神經網絡架構,但它缺少層的參數化的嚴格要求。與DBNs不同,自動編碼器使用判別模型,這樣這個結構就很難采樣輸入采樣空間,這就使得網絡更難捕捉它的內部表達。但是,降噪自動編碼器卻能很好的避免這個問題,并且比傳統的DBNs更優。它通過在訓練過程添加隨機的污染并堆疊產生場泛化性能。訓練單一的降噪自動編碼器的過程和RBMs訓練生成模型的過程一樣。
9.5、Convolutional Neural Networks卷積神經網絡
卷積神經網絡是人工神經網絡的一種,已成為當前語音分析和圖像識別領域的研究熱點。它的權值共享網絡結構使之更類似于生物神經網絡,降低了網絡模型的復雜度,減少了權值的數量。該優點在網絡的輸入是多維圖像時表現的更為明顯,使圖像可以直接作為網絡的輸入,避免了傳統識別算法中復雜的特征提取和數據重建過程。卷積網絡是為識別二維形狀而特殊設計的一個多層感知器,這種網絡結構對平移、比例縮放、傾斜或者共他形式的變形具有高度不變性。
CNNs是受早期的延時神經網絡(TDNN)的影響。延時神經網絡通過在時間維度上共享權值降低學習復雜度,適用于語音和時間序列信號的處理。
CNNs是第一個真正成功訓練多層網絡結構的學習算法。它利用空間關系減少需要學習的參數數目以提高一般前向BP算法的訓練性能。CNNs作為一個深度學習架構提出是為了最小化數據的預處理要求。在CNN中,圖像的一小部分(局部感受區域)作為層級結構的最低層的輸入,信息再依次傳輸到不同的層,每層通過一個數字濾波器去獲得觀測數據的最顯著的特征。這個方法能夠獲取對平移、縮放和旋轉不變的觀測數據的顯著特征,因為圖像的局部感受區域允許神經元或者處理單元可以訪問到最基礎的特征,例如定向邊緣或者角點。
1)卷積神經網絡的歷史
1962年Hubel和Wiesel通過對貓視覺皮層細胞的研究,提出了感受野(receptive field)的概念,1984年日本學者Fukushima基于感受野概念提出的神經認知機(neocognitron)可以看作是卷積神經網絡的第一個實現網絡,也是感受野概念在人工神經網絡領域的首次應用。神經認知機將一個視覺模式分解成許多子模式(特征),然后進入分層遞階式相連的特征平面進行處理,它試圖將視覺系統模型化,使其能夠在即使物體有位移或輕微變形的時候,也能完成識別。
通常神經認知機包含兩類神經元,即承擔特征抽取的S-元和抗變形的C-元。S-元中涉及兩個重要參數,即感受野與閾值參數,前者確定輸入連接的數目,后者則控制對特征子模式的反應程度。許多學者一直致力于提高神經認知機的性能的研究:在傳統的神經認知機中,每個S-元的感光區中由C-元帶來的視覺模糊量呈正態分布。如果感光區的邊緣所產生的模糊效果要比中央來得大,S-元將會接受這種非正態模糊所導致的更大的變形容忍性。我們希望得到的是,訓練模式與變形刺激模式在感受野的邊緣與其中心所產生的效果之間的差異變得越來越大。為了有效地形成這種非正態模糊,Fukushima提出了帶雙C-元層的改進型神經認知機。
Van Ooyen和Niehuis為提高神經認知機的區別能力引入了一個新的參數。事實上,該參數作為一種抑制信號,抑制了神經元對重復激勵特征的激勵。多數神經網絡在權值中記憶訓練信息。根據Hebb學習規則,某種特征訓練的次數越多,在以后的識別過程中就越容易被檢測。也有學者將進化計算理論與神經認知機結合,通過減弱對重復性激勵特征的訓練學習,而使得網絡注意那些不同的特征以助于提高區分能力。上述都是神經認知機的發展過程,而卷積神經網絡可看作是神經認知機的推廣形式,神經認知機是卷積神經網絡的一種特例。
2)卷積神經網絡的網絡結構
卷積神經網絡是一個多層的神經網絡,每層由多個二維平面組成,而每個平面由多個獨立神經元組成。
圖:卷積神經網絡的概念示范:輸入圖像通過和三個可訓練的濾波器和可加偏置進行卷積,濾波過程如圖一,卷積后在C1層產生三個特征映射圖,然后特征映射圖中每組的四個像素再進行求和,加權值,加偏置,通過一個Sigmoid函數得到三個S2層的特征映射圖。這些映射圖再進過濾波得到C3層。這個層級結構再和S2一樣產生S4。最終,這些像素值被光柵化,并連接成一個向量輸入到傳統的神經網絡,得到輸出。
一般地,C層為特征提取層,每個神經元的輸入與前一層的局部感受野相連,并提取該局部的特征,一旦該局部特征被提取后,它與其他特征間的位置關系也隨之確定下來;S層是特征映射層,網絡的每個計算層由多個特征映射組成,每個特征映射為一個平面,平面上所有神經元的權值相等。特征映射結構采用影響函數核小的sigmoid函數作為卷積網絡的激活函數,使得特征映射具有位移不變性。
此外,由于一個映射面上的神經元共享權值,因而減少了網絡自由參數的個數,降低了網絡參數選擇的復雜度。卷積神經網絡中的每一個特征提取層(C-層)都緊跟著一個用來求局部平均與二次提取的計算層(S-層),這種特有的兩次特征提取結構使網絡在識別時對輸入樣本有較高的畸變容忍能力。
3)關于參數減少與權值共享
上面聊到,好像CNN一個牛逼的地方就在于通過感受野和權值共享減少了神經網絡需要訓練的參數的個數。那究竟是啥的呢?
下圖左:如果我們有1000x1000像素的圖像,有1百萬個隱層神經元,那么他們全連接的話(每個隱層神經元都連接圖像的每一個像素點),就有1000x1000x1000000=10^12個連接,也就是10^12個權值參數。然而圖像的空間聯系是局部的,就像人是通過一個局部的感受野去感受外界圖像一樣,每一個神經元都不需要對全局圖像做感受,每個神經元只感受局部的圖像區域,然后在更高層,將這些感受不同局部的神經元綜合起來就可以得到全局的信息了。這樣,我們就可以減少連接的數目,也就是減少神經網絡需要訓練的權值參數的個數了。如下圖右:假如局部感受野是10x10,隱層每個感受野只需要和這10x10的局部圖像相連接,所以1百萬個隱層神經元就只有一億個連接,即10^8個參數。比原來減少了四個0(數量級),這樣訓練起來就沒那么費力了,但還是感覺很多的啊,那還有啥辦法沒?
我們知道,隱含層的每一個神經元都連接10x10個圖像區域,也就是說每一個神經元存在10x10=100個連接權值參數。那如果我們每個神經元這100個參數是相同的呢?也就是說每個神經元用的是同一個卷積核去卷積圖像。這樣我們就只有多少個參數??只有100個參數啊!!!親!不管你隱層的神經元個數有多少,兩層間的連接我只有100個參數啊!親!這就是權值共享啊!親!這就是卷積神經網絡的主打賣點啊!親!(有點煩了,呵呵)也許你會問,這樣做靠譜嗎?為什么可行呢?這個……共同學習。
好了,你就會想,這樣提取特征也忒不靠譜吧,這樣你只提取了一種特征啊?對了,真聰明,我們需要提取多種特征對不?假如一種濾波器,也就是一種卷積核就是提出圖像的一種特征,例如某個方向的邊緣。那么我們需要提取不同的特征,怎么辦,加多幾種濾波器不就行了嗎?對了。所以假設我們加到100種濾波器,每種濾波器的參數不一樣,表示它提出輸入圖像的不同特征,例如不同的邊緣。這樣每種濾波器去卷積圖像就得到對圖像的不同特征的放映,我們稱之為Feature Map。所以100種卷積核就有100個Feature Map。這100個Feature Map就組成了一層神經元。到這個時候明了了吧。我們這一層有多少個參數了?100種卷積核x每種卷積核共享100個參數=100x100=10K,也就是1萬個參數。才1萬個參數啊!親!(又來了,受不了了!)見下圖右:不同的顏色表達不同的濾波器。
嘿喲,遺漏一個問題了。剛才說隱層的參數個數和隱層的神經元個數無關,只和濾波器的大小和濾波器種類的多少有關。那么隱層的神經元個數怎么確定呢?它和原圖像,也就是輸入的大小(神經元個數)、濾波器的大小和濾波器在圖像中的滑動步長都有關!例如,我的圖像是1000x1000像素,而濾波器大小是10x10,假設濾波器沒有重疊,也就是步長為10,這樣隱層的神經元個數就是(1000x1000 )/ (10x10)=100x100個神經元了,假設步長是8,也就是卷積核會重疊兩個像素,那么……我就不算了,思想懂了就好。注意了,這只是一種濾波器,也就是一個Feature Map的神經元個數哦,如果100個Feature Map就是100倍了。由此可見,圖像越大,神經元個數和需要訓練的權值參數個數的貧富差距就越大。
需要注意的一點是,上面的討論都沒有考慮每個神經元的偏置部分。所以權值個數需要加1 。這個也是同一種濾波器共享的。
總之,卷積網絡的核心思想是將:局部感受野、權值共享(或者權值復制)以及時間或空間亞采樣這三種結構思想結合起來獲得了某種程度的位移、尺度、形變不變性。
4)一個典型的例子說明
一種典型的用來識別數字的卷積網絡是LeNet-5(效果和paper等見這)。當年美國大多數銀行就是用它來識別支票上面的手寫數字的。能夠達到這種商用的地步,它的準確性可想而知。畢竟目前學術界和工業界的結合是最受爭議的。
那下面咱們也用這個例子來說明下。
LeNet-5共有7層,不包含輸入,每層都包含可訓練參數(連接權重)。輸入圖像為32*32大小。這要比Mnist數據庫(一個公認的手寫數據庫)中最大的字母還大。這樣做的原因是希望潛在的明顯特征如筆畫斷電或角點能夠出現在最高層特征監測子感受野的中心。
我們先要明確一點:每個層有多個Feature Map,每個Feature Map通過一種卷積濾波器提取輸入的一種特征,然后每個Feature Map有多個神經元。
C1層是一個卷積層(為什么是卷積?卷積運算一個重要的特點就是,通過卷積運算,可以使原信號特征增強,并且降低噪音),由6個特征圖Feature Map構成。特征圖中每個神經元與輸入中5*5的鄰域相連。特征圖的大小為28*28,這樣能防止輸入的連接掉到邊界之外(是為了BP反饋時的計算,不致梯度損失,個人見解)。C1有156個可訓練參數(每個濾波器5*5=25個unit參數和一個bias參數,一共6個濾波器,共(5*5+1)*6=156個參數),共156*(28*28)=122,304個連接。
S2層是一個下采樣層(為什么是下采樣?利用圖像局部相關性的原理,對圖像進行子抽樣,可以減少數據處理量同時保留有用信息),有6個14*14的特征圖。特征圖中的每個單元與C1中相對應特征圖的2*2鄰域相連接。S2層每個單元的4個輸入相加,乘以一個可訓練參數,再加上一個可訓練偏置。結果通過sigmoid函數計算。可訓練系數和偏置控制著sigmoid函數的非線性程度。如果系數比較小,那么運算近似于線性運算,亞采樣相當于模糊圖像。如果系數比較大,根據偏置的大小亞采樣可以被看成是有噪聲的“或”運算或者有噪聲的“與”運算。每個單元的2*2感受野并不重疊,因此S2中每個特征圖的大小是C1中特征圖大小的1/4(行和列各1/2)。S2層有12個可訓練參數和5880個連接。
圖:卷積和子采樣過程:卷積過程包括:用一個可訓練的濾波器fx去卷積一個輸入的圖像(第一階段是輸入的圖像,后面的階段就是卷積特征map了),然后加一個偏置bx,得到卷積層Cx。子采樣過程包括:每鄰域四個像素求和變為一個像素,然后通過標量Wx+1加權,再增加偏置bx+1,然后通過一個sigmoid激活函數,產生一個大概縮小四倍的特征映射圖Sx+1。
所以從一個平面到下一個平面的映射可以看作是作卷積運算,S-層可看作是模糊濾波器,起到二次特征提取的作用。隱層與隱層之間空間分辨率遞減,而每層所含的平面數遞增,這樣可用于檢測更多的特征信息。
C3層也是一個卷積層,它同樣通過5x5的卷積核去卷積層S2,然后得到的特征map就只有10x10個神經元,但是它有16種不同的卷積核,所以就存在16個特征map了。這里需要注意的一點是:C3中的每個特征map是連接到S2中的所有6個或者幾個特征map的,表示本層的特征map是上一層提取到的特征map的不同組合(這個做法也并不是唯一的)。(看到沒有,這里是組合,就像之前聊到的人的視覺系統一樣,底層的結構構成上層更抽象的結構,例如邊緣構成形狀或者目標的部分)。
剛才說C3中每個特征圖由S2中所有6個或者幾個特征map組合而成。為什么不把S2中的每個特征圖連接到每個C3的特征圖呢?原因有2點。第一,不完全的連接機制將連接的數量保持在合理的范圍內。第二,也是最重要的,其破壞了網絡的對稱性。由于不同的特征圖有不同的輸入,所以迫使他們抽取不同的特征(希望是互補的)。
例如,存在的一個方式是:C3的前6個特征圖以S2中3個相鄰的特征圖子集為輸入。接下來6個特征圖以S2中4個相鄰特征圖子集為輸入。然后的3個以不相鄰的4個特征圖子集為輸入。最后一個將S2中所有特征圖為輸入。這樣C3層有1516個可訓練參數和151600個連接。
S4層是一個下采樣層,由16個5*5大小的特征圖構成。特征圖中的每個單元與C3中相應特征圖的2*2鄰域相連接,跟C1和S2之間的連接一樣。S4層有32個可訓練參數(每個特征圖1個因子和一個偏置)和2000個連接。
C5層是一個卷積層,有120個特征圖。每個單元與S4層的全部16個單元的5*5鄰域相連。由于S4層特征圖的大小也為5*5(同濾波器一樣),故C5特征圖的大小為1*1:這構成了S4和C5之間的全連接。之所以仍將C5標示為卷積層而非全相聯層,是因為如果LeNet-5的輸入變大,而其他的保持不變,那么此時特征圖的維數就會比1*1大。C5層有48120個可訓練連接。
F6層有84個單元(之所以選這個數字的原因來自于輸出層的設計),與C5層全相連。有10164個可訓練參數。如同經典神經網絡,F6層計算輸入向量和權重向量之間的點積,再加上一個偏置。然后將其傳遞給sigmoid函數產生單元i的一個狀態。
最后,輸出層由歐式徑向基函數(Euclidean Radial Basis Function)單元組成,每類一個單元,每個有84個輸入。換句話說,每個輸出RBF單元計算輸入向量和參數向量之間的歐式距離。輸入離參數向量越遠,RBF輸出的越大。一個RBF輸出可以被理解為衡量輸入模式和與RBF相關聯類的一個模型的匹配程度的懲罰項。用概率術語來說,RBF輸出可以被理解為F6層配置空間的高斯分布的負log-likelihood。給定一個輸入模式,損失函數應能使得F6的配置與RBF參數向量(即模式的期望分類)足夠接近。這些單元的參數是人工選取并保持固定的(至少初始時候如此)。這些參數向量的成分被設為-1或1。雖然這些參數可以以-1和1等概率的方式任選,或者構成一個糾錯碼,但是被設計成一個相應字符類的7*12大小(即84)的格式化圖片。這種表示對識別單獨的數字不是很有用,但是對識別可打印ASCII集中的字符串很有用。
使用這種分布編碼而非更常用的“1 of N”編碼用于產生輸出的另一個原因是,當類別比較大的時候,非分布編碼的效果比較差。原因是大多數時間非分布編碼的輸出必須為0。這使得用sigmoid單元很難實現。另一個原因是分類器不僅用于識別字母,也用于拒絕非字母。使用分布編碼的RBF更適合該目標。因為與sigmoid不同,他們在輸入空間的較好限制的區域內興奮,而非典型模式更容易落到外邊。
RBF參數向量起著F6層目標向量的角色。需要指出這些向量的成分是+1或-1,這正好在F6 sigmoid的范圍內,因此可以防止sigmoid函數飽和。實際上,+1和-1是sigmoid函數的最大彎曲的點處。這使得F6單元運行在最大非線性范圍內。必須避免sigmoid函數的飽和,因為這將會導致損失函數較慢的收斂和病態問題。
5)訓練過程
神經網絡用于模式識別的主流是有指導學習網絡,無指導學習網絡更多的是用于聚類分析。對于有指導的模式識別,由于任一樣本的類別是已知的,樣本在空間的分布不再是依據其自然分布傾向來劃分,而是要根據同類樣本在空間的分布及不同類樣本之間的分離程度找一種適當的空間劃分方法,或者找到一個分類邊界,使得不同類樣本分別位于不同的區域內。這就需要一個長時間且復雜的學習過程,不斷調整用以劃分樣本空間的分類邊界的位置,使盡可能少的樣本被劃分到非同類區域中。
卷積網絡在本質上是一種輸入到輸出的映射,它能夠學習大量的輸入與輸出之間的映射關系,而不需要任何輸入和輸出之間的精確的數學表達式,只要用已知的模式對卷積網絡加以訓練,網絡就具有輸入輸出對之間的映射能力。卷積網絡執行的是有導師訓練,所以其樣本集是由形如:(輸入向量,理想輸出向量)的向量對構成的。所有這些向量對,都應該是來源于網絡即將模擬的系統的實際“運行”結果。它們可以是從實際運行系統中采集來的。在開始訓練前,所有的權都應該用一些不同的小隨機數進行初始化。“小隨機數”用來保證網絡不會因權值過大而進入飽和狀態,從而導致訓練失敗;“不同”用來保證網絡可以正常地學習。實際上,如果用相同的數去初始化權矩陣,則網絡無能力學習。
訓練算法與傳統的BP算法差不多。主要包括4步,這4步被分為兩個階段:
第一階段,向前傳播階段:
a)從樣本集中取一個樣本(X,Yp),將X輸入網絡;
b)計算相應的實際輸出Op。
在此階段,信息從輸入層經過逐級的變換,傳送到輸出層。這個過程也是網絡在完成訓練后正常運行時執行的過程。在此過程中,網絡執行的是計算(實際上就是輸入與每層的權值矩陣相點乘,得到最后的輸出結果):
Op=Fn(…(F2(F1(XpW(1))W(2))…)W(n))
第二階段,向后傳播階段
a)算實際輸出Op與相應的理想輸出Yp的差;
b)按極小化誤差的方法反向傳播調整權矩陣。
6)卷積神經網絡的優點
卷積神經網絡CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。由于CNN的特征檢測層通過訓練數據進行學習,所以在使用CNN時,避免了顯式的特征抽取,而隱式地從訓練數據中進行學習;再者由于同一特征映射面上的神經元權值相同,所以網絡可以并行學習,這也是卷積網絡相對于神經元彼此相連網絡的一大優勢。卷積神經網絡以其局部權值共享的特殊結構在語音識別和圖像處理方面有著獨特的優越性,其布局更接近于實際的生物神經網絡,權值共享降低了網絡的復雜性,特別是多維輸入向量的圖像可以直接輸入網絡這一特點避免了特征提取和分類過程中數據重建的復雜度。
流的分類方式幾乎都是基于統計特征的,這就意味著在進行分辨前必須提取某些特征。然而,顯式的特征提取并不容易,在一些應用問題中也并非總是可靠的。卷積神經網絡,它避免了顯式的特征取樣,隱式地從訓練數據中進行學習。這使得卷積神經網絡明顯有別于其他基于神經網絡的分類器,通過結構重組和減少權值將特征提取功能融合進多層感知器。它可以直接處理灰度圖片,能夠直接用于處理基于圖像的分類。
卷積網絡較一般神經網絡在圖像處理方面有如下優點: a)輸入圖像和網絡的拓撲結構能很好的吻合;b)特征提取和模式分類同時進行,并同時在訓練中產生;c)權重共享可以減少網絡的訓練參數,使神經網絡結構變得更簡單,適應性更強。
7)小結
CNNs中這種層間聯系和空域信息的緊密關系,使其適于圖像處理和理解。而且,其在自動提取圖像的顯著特征方面還表現出了比較優的性能。在一些例子當中,Gabor濾波器已經被使用在一個初始化預處理的步驟中,以達到模擬人類視覺系統對視覺刺激的響應。在目前大部分的工作中,研究者將CNNs應用到了多種機器學習問題中,包括人臉識別,文檔分析和語言檢測等。為了達到尋找視頻中幀與幀之間的相干性的目的,目前CNNs通過一個時間相干性去訓練,但這個不是CNNs特有的。
十、總結與展望
1)Deep learning總結
深度學習是關于自動學習要建模的數據的潛在(隱含)分布的多層(復雜)表達的算法。換句話來說,深度學習算法自動的提取分類需要的低層次或者高層次特征。高層次特征,一是指該特征可以分級(層次)地依賴其他特征,例如:對于機器視覺,深度學習算法從原始圖像去學習得到它的一個低層次表達,例如邊緣檢測器,小波濾波器等,然后在這些低層次表達的基礎上再建立表達,例如這些低層次表達的線性或者非線性組合,然后重復這個過程,最后得到一個高層次的表達。
Deep learning能夠得到更好地表示數據的feature,同時由于模型的層次、參數很多,capacity足夠,因此,模型有能力表示大規模數據,所以對于圖像、語音這種特征不明顯(需要手工設計且很多沒有直觀物理含義)的問題,能夠在大規模訓練數據上取得更好的效果。此外,從模式識別特征和分類器的角度,deep learning框架將feature和分類器結合到一個框架中,用數據去學習feature,在使用中減少了手工設計feature的巨大工作量(這是目前工業界工程師付出努力最多的方面),因此,不僅僅效果可以更好,而且,使用起來也有很多方便之處,因此,是十分值得關注的一套框架,每個做ML的人都應該關注了解一下。
當然,deep learning本身也不是完美的,也不是解決世間任何ML問題的利器,不應該被放大到一個無所不能的程度。
2)Deep learning未來
深度學習目前仍有大量工作需要研究。目前的關注點還是從機器學習的領域借鑒一些可以在深度學習使用的方法,特別是降維領域。例如:目前一個工作就是稀疏編碼,通過壓縮感知理論對高維數據進行降維,使得非常少的元素的向量就可以精確的代表原來的高維信號。另一個例子就是半監督流行學習,通過測量訓練樣本的相似性,將高維數據的這種相似性投影到低維空間。另外一個比較鼓舞人心的方向就是evolutionary programming approaches(遺傳編程方法),它可以通過最小化工程能量去進行概念性自適應學習和改變核心架構。
Deep learning還有很多核心的問題需要解決:
(1)對于一個特定的框架,對于多少維的輸入它可以表現得較優(如果是圖像,可能是上百萬維)?
(2)對捕捉短時或者長時間的時間依賴,哪種架構才是有效的?
(3)如何對于一個給定的深度學習架構,融合多種感知的信息?
(4)有什么正確的機理可以去增強一個給定的深度學習架構,以改進其魯棒性和對扭曲和數據丟失的不變性?
(5)模型方面是否有其他更為有效且有理論依據的深度模型學習算法?
探索新的特征提取模型是值得深入研究的內容。此外有效的可并行訓練算法也是值得研究的一個方向。當前基于最小批處理的隨機梯度優化算法很難在多計算機中進行并行訓練。通常辦法是利用圖形處理單元加速學習過程。然而單個機器GPU對大規模數據識別或相似任務數據集并不適用。在深度學習應用拓展方面,如何合理充分利用深度學習在增強傳統學習算法的性能仍是目前各領域的研究重點。
十一、參考文獻和Deep Learning學習資源
先是機器學習領域大牛的微博:@余凱_西二旗民工;@老師木;@梁斌penny;@張棟_機器學習;@鄧侃;@大數據皮東;@djvu9……
(1)Deep Learning
(2)Deep Learning Methods for Vision
http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
(3)Neural Network for Recognition of Handwritten Digits[Project]
http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
(4)Training a deep autoencoder or a classifier on MNIST digits
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
(5)Ersatz:deep neural networks in the cloud
(6)Deep Learning
http://www.cs.nyu.edu/~yann/research/deep/
(7)Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凱)
http://vipl.ict.ac.cn/News/academic-report-tutorial-deep-learning-dr-kai-yu
(8)CNN - Convolutional neural network class
http://www.mathworks.cn/matlabcentral/fileexchange/24291
(9)Yann LeCun's Publications
http://yann.lecun.com/exdb/publis/index.html#lecun-98
(10) LeNet-5, convolutional neural networks
http://yann.lecun.com/exdb/lenet/index.html
(11) Deep Learning 大牛Geoffrey E. Hinton's HomePage
http://www.cs.toronto.edu/~hinton/
(12)Sparse coding simulation software[Project]
http://redwood.berkeley.edu/bruno/sparsenet/
(13)Andrew Ng's homepage
http://robotics.stanford.edu/~ang/
(14)stanford deep learning tutorial
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
(15)「深度神經網絡」(deep neural network)具體是怎樣工作的
http://www.zhihu.com/question/19833708?group_id=15019075#1657279
(16)A shallow understanding on deep learning
http://blog.sina.com.cn/s/blog_6ae183910101dw2z.html
(17)Bengio's Learning Deep Architectures for AI
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
(18)andrew ng's talk video:
http://techtalks.tv/talks/machine-learning-and-ai-via-brain-simulations/57862/
(19)cvpr 2012 tutorial:
http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/tutorial_p2_nnets_ranzato_short.pdf
(20)Andrew ng清華報告聽后感
http://blog.sina.com.cn/s/blog_593af2a70101bqyo.html
(21)Kai Yu:CVPR12 Tutorial on Deep Learning Sparse Coding
(22)Honglak Lee:Deep Learning Methods for Vision
(23)Andrew Ng :Machine Learning and AI via Brain simulations
(24)Deep Learning 【2,3】
http://blog.sina.com.cn/s/blog_46d0a3930101gs5h.html
(25)deep learning這件小事……
http://blog.sina.com.cn/s/blog_67fcf49e0101etab.html
(26)Yoshua Bengio, U. Montreal:Learning Deep Architectures
(27)Kai Yu:A Tutorial on Deep Learning
(28)Marc'Aurelio Ranzato:NEURAL NETS FOR VISION
(29)Unsupervised feature learning and deep learning
http://blog.csdn.net/abcjennifer/article/details/7804962
(30)機器學習前沿熱點–Deep Learning
http://elevencitys.com/?p=1854
(31)機器學習——深度學習(Deep Learning)
http://blog.csdn.net/abcjennifer/article/details/7826917
(32)卷積神經網絡
http://wenku.baidu.com/view/cd16fb8302d276a200292e22.html
(33)淺談Deep Learning的基本思想和方法
http://blog.csdn.net/xianlingmao/article/details/8478562
(34)深度神經網絡
http://blog.csdn.net/txdb/article/details/6766373
(35)Google的貓臉識別:人工智能的新突破
http://www.36kr.com/p/122132.html
(36)余凱,深度學習-機器學習的新浪潮,Technical News程序天下事
http://blog.csdn.net/datoubo/article/details/8577366
(37)Geoffrey Hinton:UCLTutorial on: Deep Belief Nets
(38)Learning Deep Boltzmann Machines
http://web.mit.edu/~rsalakhu/www/DBM.html
(39)Efficient Sparse Coding Algorithm
http://blog.sina.com.cn/s/blog_62af19190100gux1.html
(40)Itamar Arel, Derek C. Rose, and Thomas P. Karnowski: Deep Machine Learning—A New Frontier in Artificial Intelligence Research
(41)Francis Quintal Lauzon:An introduction to deep learning
(42)Tutorial on Deep Learning and Applications
(43)Boltzmann神經網絡模型與學習算法
http://wenku.baidu.com/view/490dcf748e9951e79b892785.html
(44)Deep Learning 和 Knowledge Graph 引爆大數據革命