小學數學應用題綜合訓練(07)
61. 有一個果園,去年結果的果樹比不結果的果樹的2倍還多60棵,今年又有160棵果樹結了果,這時結果的果樹正好是不結果的果樹的5倍。果園里共有多少棵果樹?
62. 小明步行從甲地出發到乙地,李剛騎摩托車同時從乙地出發到甲地。48分鐘后兩人相遇,李剛到達甲地后馬上返回乙地,在第一次相遇后16分鐘追上小明。如果李剛不停地往返于甲、乙兩地,那么當小明到達乙地時,李剛共追上小明幾次?
63. 同樣走100米,小明要走180步,父親要走120步。父子同時同方向從同一地點出發,如果每走一步所用的時間相同,那么父親走出450米后往回走,還要走多少步才能遇到小明?
64. 一艘輪船在兩個港口間航行,水速為6千米/小時,順水航行需要4小時,逆水航行需要7小時,求兩個港口之間的距離。
65. 有甲、乙、丙三輛汽車,各以一定的速度從A地開往B地,乙比丙晚出發10分鐘,出發后40分鐘追上丙;甲比乙又晚出發10分鐘,出發后60分鐘追上丙,問甲出發后幾分鐘追上乙?
66. 甲、乙合作完成一項工作,由于配合的好,甲的工作效率比單獨做時提高1/10,乙的工作效率比單獨做時提高1/5,甲、乙合作6小時完成了這項工作,如果甲單獨做需要11小時,那么乙單獨做需要幾小時?
67. A、B、C、D、E五名學生站成一橫排,他們的手中共拿著20面小旗。現知道,站在C右邊的學生共拿著11面小旗,站在B左邊的學生共拿著10面小旗,站在D左邊的學生共拿著8面小旗,站在E左邊的學生共拿著16面小旗。五名學生從左至右依次是誰?各拿幾面小旗?
68. 小明在360米長的環行的跑道上跑了一圈,已知他前一半時間每秒跑5米,后一半時間每秒跑4米,問他后一半路程用了多少時間?
69. 小英和小明為了測量飛駛而過的火車的長度和速度,他們拿了兩塊秒表,小英用一塊表記下火車從他面前通過所花的時間是15秒,小明用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是18秒,已知兩根電線桿之間的距離是60米,求火車的全長和速度。
70. 小明從家到學校時,前一半路程步行,后一半路程乘車;他從學校到家時,前1/3時間乘車,后2/3時間步行。結果去學校的時間比回家的時間多20分鐘,已知小明從家到學校的路程是多少千米?
小學數學應用題綜合訓練(08)
71. 數學練習共舉行了20次,共出試題374道,每次出的題數是16,21,24問出16,21,24題的分別有多少次?
72. 一個整數除以2余1,用所得的商除以5余4,再用所得的商除以6余1。用這個整數除以60,余數是多少?
73. 少先隊員在校園里栽的蘋果樹苗是梨樹苗的2倍。如果每人栽3棵梨樹苗,則余2棵;如果每人栽7棵蘋果樹苗,則少6棵。問共有多少名少先隊員?蘋果和梨樹苗共有多少棵?
74. 某人開汽車從A城到B城要行200千米,開始時他以56千米/小時的速度行駛,但途中因汽車故障停車修理用去半小時,為了按時到達,他必須把速度增加14千米/小時,跑完以后的路程,他修車的地方距離A 城多少千米?
75. 甲、乙兩人分別從A、B兩地同時出發,相向而行,乙的速度是甲的2/3,兩人相遇后繼續前進,甲到達B地,乙到達A地立即返回,已知兩人第二次相遇的地點距離第一次相遇的地點是3000米,求A、B兩地的距離。
<>< font="">
76. 一條船往返于甲、乙兩港之間,已知船在靜水中的速度為9千米/小時,平時逆行與順行所用時間的比為2:1。一天因下雨,水流速度為原來的2倍,這條船往返共用10小時,問甲、乙兩港相距多少千米?
77. 某學校入學考試,確定了錄取分數線,報考的學生中,只有1/3被錄取,錄取者平均分比錄取分數線高6分,沒有被錄取的同學其平均分比錄取分數線低15分,所有考生的平均分是80分,問錄取分數線是多少分?
78. 一群學生搬磚,如果有12人每人各搬7塊,其余的每人搬5塊,那么最后余下148塊;如果有30人每人各搬8塊,其余的每人搬7塊,那么最后余下20塊。問學生共有多少人?磚有多少塊?
79. 甲、乙兩車分別從A、B兩地同時相向而行,已知甲車速度與乙車速度之比為4:3,C地在A、B之間,甲、乙兩車到達C地的時間分別是上午8點和下午3點,問甲、乙兩車相遇是什么時間?
80. 一次棋賽,記分方法是,勝者得2分,負者得0分,和棋兩人各得1分,每位選手都與其他選手各對局一次,現知道選手中男生是女生的10倍,但其總得分只為女生得分的4。5倍,問共有幾名女生參賽?女生共得幾分?
小學數學應用題綜合訓練(09)
81. 有若干個自然數,它們的算術平均數是10,如果從這些數中去掉最大的一個,則余下的算術平均數為9;如果去掉最小的一個,則余下的算術平均數為11,這些數最多有多少個?這些數中最大的數最大值是幾?
82. 某班有少先隊員35人,這個班有男生23人,這個班女生少先隊員比男生非少先隊員多幾人?
83. 小東計劃到周口店參觀猿人遺址。如果他坐汽車以40千米/小時的速度行駛,那么比騎車去早到3小時,如果他以8千米/小時的速度步行去,那么比騎車晚到5小時,小東的出發點到周口店有多少千米?
84. 甲、乙兩船在相距90千米的河上航行,如果相向而行,3小時相遇,如果同向而行則15小時甲船追上乙船。求在靜水中甲、乙兩船的速度。
85. 二年級兩個班共有學生90人,其中少先隊員有71人,一班少先隊員占本班人數的75%,二班少先隊員占本班人數的5/6。一班少先隊員人數比二班少先隊員人數多幾人?
86. 一個容器中已注滿水,有大、中、小三個球。第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,現知道每次從容器中溢出水量的情況是:第一次是第二次的1/2,第三次是第二次的1。5倍。求三個球的體積之比。
87. 某人翻越一座山用了2小時,返回用了2。5小時,他上山的速度是3000米/小時,下山的速度是4500米/小時。問翻越這座山要走多少米?
88. 鋼筋原材料每根長7。3米,每套鋼筋架子用長2。4米、2。1米和1。5米的鋼筋各一段。現需要綁好鋼筋架子100套,至少要用去原材料多少根?
89. 有一塊銅鋅合金,其中銅和鋅的比2:3。現知道再加入6克鋅,熔化后共得新合金36克,新合金中銅和鋅的比是多少?
90. 小明通常總是步行上學,有一天他想鍛煉身體,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍。這樣小明比平時早35分到校,小明步行上學需要多少分鐘?
小學數學應用題綜合訓練(10)
91. 甲、乙、丙三人,甲的年齡比乙的年齡的2倍還大3歲,乙的年齡比丙的年齡的2倍小2歲,三個人的年齡之和是109歲,分別求出甲、乙、丙的年齡。
92. 快車以60千米/小時的速度從甲站向乙站開出,1。5小時后,慢車以40千米/小時的速度從乙站行甲站開出,。兩車相遇時,相遇點離兩站的中點70千米。甲、乙兩站相距多少千米?
93. 甲、乙兩車先后離開學校以相同的速度開往博物館,已知8:32分甲車與學校的距離是乙車與學校距離的3倍,8:39分甲車與學校的距離是乙車與學校距離的2倍,求甲車離開學校的時間。
94. 有一個工作小組,當每個工人在各自的工作崗位上工作時,7小時可生產一批零件,如果交換工人甲、乙的崗位,其他人不變,那么可提前1小時,完成這批零件,如果交換工人丙、丁的崗位,其他人不變,也可提前1小時,問如果同時交換甲與乙、丙與丁的崗位,其他人不變,那么完成這批零件需多長的時間。
95. 用10塊長7厘米、寬5厘米、高3厘米的長方體積木,拼成一個長方體,這個長方體的表面積最小是多少?
96. 公圓只售兩種門票:個人票每張5元,10人一張的團體票每張30元,購買10張以上的團體票的可優惠10%。(1)甲單位45人逛公園,按以上規定買票,最少應付多少錢?(2)乙單位208人逛公園,按以上的規定買票,最少應付多少錢?
97. 甲、乙、丙三人,參加一次考試,共得260分,已知甲得分的1/3,乙得分的1/4與丙得分的一半減去22分都相等,那么丙得分多少?
98. 一項工程,甲、、乙兩人合作4天后,再由乙單獨做5天完成,已知甲比乙每天多完成這項工程的1/30。甲、乙單獨做這項工程各需要幾天?
99. 有長短兩支蠟燭,(相同時間中燃燒長度相同),它們的長度之和為56厘米,將它們同時點燃一段時間后,長蠟燭同短蠟燭點燃前一樣長,這時短蠟燭的長度又恰好是長蠟燭的2/3。點燃前長蠟燭有多長?
100. 一批蘋果平均分裝在20個筐中,如果每筐多裝1/9,可省下幾只筐?
小學數學應用題綜合訓練(11)
101. 小明買了1支鋼筆,所用的錢比所帶的總錢數的一半多0。5元;買了1支圓珠筆,所用的錢比買鋼筆后余下的錢的一半少0。5元;又買了2。8元的本子,最后剩下0。8元。小明帶了多少元錢?
102. 兒子今年6歲,父親10年前的年齡等于兒子20年后的年齡。當父親的年齡恰好是兒子年齡的2倍時是在公元哪一年?
103. 在一條長12米的電線上,黃甲蟲在8:20從右端以每分鐘15厘米的速度向左端爬去;8:30紅甲蟲和藍甲蟲從左端分別以每分鐘13厘米和11厘米的速度向右端爬去,紅甲蟲在什么時刻恰好在藍甲蟲和黃甲蟲的中間?
104. 一支解放軍部隊從駐地乘車趕往某地抗洪搶險,如果將車速比原來提高1/9,就可比預定的時間20分鐘趕到;如果先按原速度行駛72千米,再將車速比原來提高1/3,就可比預定的時間提前30分鐘趕到。這支解放軍部隊的行程是多少千米?
105. 一只船從甲碼頭到乙碼頭往返一次共用4小時,回來時順水比去時每小時多行12千米。因此后2小時比前2小時多行18千米,那么甲、乙兩個碼頭距離是幾千米?
106. 甲、乙兩個班的學生人數的比是5:4,如果從乙班轉走9名學生,那么甲班就比乙班人數多2/3。這時乙班有多少人?
107. 甲、乙兩堆煤共重78噸,從甲堆運出25%到乙堆,則乙堆與甲堆的重量比是8:5。原來各有多少噸煤?
108. 一件工作,甲單獨做要20天完成,乙單獨做要12天完成,如果這件工作先由甲隊做若干天,再由乙隊做完,兩個隊共用了14天,甲隊做了幾天?
109. 某電機廠計劃生產一批電機,開始每天生產50臺,生產了計劃的1/5后,由于技術改造使工作效率提高60%,這樣完成任務比計劃提前了3天,生產這批電機的任務是多少臺?
110. 兩個數相除商9余4,如果被除數、除數都擴大到原來的3倍。那么被除數、除數、商、余數之和等于2583。原來的被除數和除數各是多少?
本站僅提供存儲服務,所有內容均由用戶發布,如發現有害或侵權內容,請
點擊舉報。