血流動(dòng)力學(xué)因素在動(dòng)脈粥樣硬化的發(fā)生發(fā)展及血管重構(gòu)過程中起到關(guān)鍵性作用[1-3]。頸動(dòng)脈局部血流動(dòng)力學(xué)研究已經(jīng)成為此領(lǐng)域研究的熱點(diǎn)問題[4-6]。頸動(dòng)脈分叉部位斑塊形成及血管狹窄能夠通過影響顱內(nèi)血流狀態(tài)從而引起臨床缺血癥狀,反之,顱內(nèi)動(dòng)脈的血流狀態(tài)也會(huì)對(duì)頸動(dòng)脈分叉部血流動(dòng)力學(xué)狀態(tài)起到重要影響。
顱內(nèi)willis動(dòng)脈環(huán)(circle of willis,CoW)是由顱內(nèi)的幾大供血?jiǎng)用}共同構(gòu)成的環(huán)狀結(jié)構(gòu)。從血流動(dòng)力學(xué)角度看,CoW具有自動(dòng)調(diào)節(jié)功能,能夠分配含氧血流至顱內(nèi)的各大動(dòng)脈。在顱內(nèi)動(dòng)脈狹窄阻塞時(shí),此結(jié)構(gòu)能夠提供必要的側(cè)支循環(huán)。但CoW存在明顯的個(gè)體差異,約有50%的正常人群存在變異[7],表現(xiàn)為環(huán)狀結(jié)構(gòu)不完整,部分血管發(fā)育不良(圖1)。
血管的幾何結(jié)構(gòu)是血流動(dòng)力學(xué)的基礎(chǔ)[8-9]。顱內(nèi)血管的形態(tài)和結(jié)構(gòu)的差異必然導(dǎo)致局部血流動(dòng)力學(xué)狀態(tài)的差異,而遠(yuǎn)端血管的血流速度、血流阻力等血流動(dòng)力學(xué)因素必然對(duì)近端頸動(dòng)脈分叉部位血流動(dòng)力學(xué)狀態(tài)產(chǎn)生影響。雖然迄今為止,頸動(dòng)脈粥樣硬化病變被認(rèn)為主要與局部血流動(dòng)力學(xué)狀態(tài)改變有關(guān),但由于顱外段頸動(dòng)脈與顱內(nèi)動(dòng)脈的一體性,僅僅對(duì)頸動(dòng)脈分叉局部血流動(dòng)力學(xué)相關(guān)參數(shù)進(jìn)行評(píng)估顯然是不全面的。
近年來,對(duì)頸動(dòng)脈等動(dòng)脈粥樣硬化好發(fā)部位的血流動(dòng)力學(xué)參數(shù)的評(píng)估成為相關(guān)領(lǐng)域研究的熱點(diǎn)。計(jì)算流體力學(xué)(computational fluid dynamic, CFD) 技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用使得血管動(dòng)力學(xué)模擬方面的研究取得了一定進(jìn)展[11-14]。利用CT、MR等影像技術(shù)獲取血管形態(tài)和速度數(shù)據(jù),應(yīng)用CFD方法可以重建局部流場(chǎng),計(jì)算血流動(dòng)力學(xué)參數(shù)。基于計(jì)算流體力學(xué)方法的頸動(dòng)脈血流動(dòng)力學(xué)研究已經(jīng)取得了很多令人滿意的結(jié)果。目前,此領(lǐng)域的研究熱點(diǎn)集中于斑塊進(jìn)展與局部血流動(dòng)力學(xué)因素之間的相關(guān)性,研究發(fā)現(xiàn)局部血流動(dòng)力學(xué)因素在斑塊的發(fā)展以及表面破裂過程中起到重要作用[15-17]。
磁共振成像(magnetic resonanceimaging,MRI)具備無創(chuàng)、圖像對(duì)比分辨率較高、可以同時(shí)獲取血管的形態(tài)、血管壁的特征及血流速度向量值等優(yōu)勢(shì),使得應(yīng)用MR技術(shù)進(jìn)行血流動(dòng)力學(xué)的在體評(píng)估具備可能性。應(yīng)用相位對(duì)比法(phase-contrast,PC)MR成像技術(shù)可準(zhǔn)確地獲取管腔內(nèi)各個(gè)像素點(diǎn)的流體速度,并反映速度在心動(dòng)周期內(nèi)的分布和變化特征,是一種成熟的血流定量測(cè)量技術(shù)。我們的前期研究顯示,應(yīng)用2D PC成像獲取的血流速度數(shù)據(jù),結(jié)合圖像后處理技術(shù),可以準(zhǔn)確地對(duì)正常人群頸動(dòng)脈的血流速度、血流率以及管壁切應(yīng)力進(jìn)行計(jì)算,并能夠?qū)植康难髂J竭M(jìn)行評(píng)估(圖2)。但二維成像局限于對(duì)軸位單一層面血流數(shù)據(jù)的測(cè)量,對(duì)一段范圍的血流進(jìn)行分析存在局限性。近幾年發(fā)展起來的四維血流磁共振成像技術(shù)(four dimensional flow MRI,4D flow MRI)可獲取三維方向的速度容積數(shù)據(jù)及一個(gè)時(shí)間維,又稱為時(shí)間分辨的3D PC技術(shù)。由于包含血流在三維方向上的信息,可以實(shí)時(shí)重建在采集范圍內(nèi)任何位置的血流分析信息。所獲取血流數(shù)據(jù)經(jīng)過后處理,可以經(jīng)專業(yè)血流軟件顯示三維血流分布,計(jì)算血流動(dòng)力學(xué)參數(shù)(圖3和圖4)。這種方法提供了一個(gè)無創(chuàng)性定性和定量評(píng)估心血管血流狀態(tài)的方法,給血流動(dòng)力學(xué)的在體評(píng)估提供了新的技術(shù)平臺(tái)。與CFD方法相比,這項(xiàng)技術(shù)最明顯的優(yōu)勢(shì)就是可以實(shí)現(xiàn)直接在體血流動(dòng)力學(xué)狀態(tài)顯示和分析,從而避免了由于建立假設(shè)引起的計(jì)算誤差。已經(jīng)有研究應(yīng)用這種技術(shù)對(duì)主動(dòng)脈[18]、頸動(dòng)脈[19]、顱內(nèi)動(dòng)脈[20]等血管進(jìn)行在體研究,取得了令人滿意的結(jié)果。不管是血流速度,還是壁切應(yīng)力數(shù)據(jù)均有較好的可重復(fù)性[21]。
由于CoW的結(jié)構(gòu)特點(diǎn)和其在側(cè)支循環(huán)中所起到的重要作用,越來越多的研究者開始關(guān)注CoW結(jié)構(gòu)相關(guān)的血流動(dòng)力學(xué)研究[22]。由于CoW結(jié)構(gòu)直接影響顱內(nèi)動(dòng)脈側(cè)支循環(huán)代償能力,頸動(dòng)脈狹窄后,顱內(nèi)結(jié)構(gòu)的差別可導(dǎo)致不同的血流模式分布[23-24]。一些研究應(yīng)用經(jīng)顱多普勒超聲方法,通過獲取血流頻譜、血流速度以及阻力指數(shù)等參數(shù)來間接判斷頸動(dòng)脈狹窄后顱內(nèi)血流動(dòng)力學(xué)和側(cè)支循環(huán)狀態(tài)[25-26]。也有研究[27-28]應(yīng)用動(dòng)脈自旋標(biāo)記動(dòng)態(tài)MR成像技術(shù)通過對(duì)達(dá)峰值時(shí)間和量值等參數(shù)分析頸動(dòng)脈狹窄及內(nèi)膜剝脫術(shù)后的腦血流狀態(tài)。這些研究的局限性在于無法直接顯示顱內(nèi)的血流模式以及血流動(dòng)力學(xué)特點(diǎn)。近年來,一些研究開始應(yīng)用計(jì)算流體力學(xué)方法重建頸動(dòng)脈狹窄狀態(tài)下顱內(nèi)的血流動(dòng)力學(xué)模型[29-31],發(fā)現(xiàn)單側(cè)頸內(nèi)動(dòng)脈嚴(yán)重狹窄情況下,不同的CoW結(jié)構(gòu)可導(dǎo)致不同的側(cè)支循環(huán)代償狀態(tài)。
然而,以上這些研究都主要關(guān)注于頸動(dòng)脈狹窄對(duì)顱內(nèi)血流模式的影響。而由于頸動(dòng)脈與顱內(nèi)動(dòng)脈的一體性,這種影響作用必然是相互的。2006年,Tanaka H等的研究[32]就發(fā)現(xiàn),變異的CoW結(jié)構(gòu)與基底動(dòng)脈以及顱內(nèi)頸內(nèi)動(dòng)脈血流率密切相關(guān)。說明CoW結(jié)構(gòu)對(duì)近心段血管的血流動(dòng)力學(xué)狀態(tài)會(huì)產(chǎn)生影響。
2011年的一項(xiàng)流體力學(xué)模擬研究[33]顯示,當(dāng)CoW結(jié)構(gòu)不完整,無法提供側(cè)支循環(huán)狀態(tài)下,頸動(dòng)脈狹窄使得遠(yuǎn)端血管供血下降。這時(shí),為了盡量滿足局部腦組織的血供,頸動(dòng)脈斑塊管腔內(nèi)血流速度會(huì)明顯增高,額外增加了斑塊局部壓力,使斑塊易于出現(xiàn)破裂。這說明,顱內(nèi)動(dòng)脈CoW的結(jié)構(gòu)和血流動(dòng)力學(xué)狀態(tài),對(duì)狹窄頸動(dòng)脈的血流動(dòng)力學(xué)狀態(tài)可產(chǎn)生重要的影響作用。隨著流體力學(xué)研究在此領(lǐng)域的發(fā)展,顱內(nèi)CoW結(jié)構(gòu)、血流動(dòng)力學(xué)狀態(tài)與頸動(dòng)脈血流動(dòng)力學(xué)狀態(tài)的綜合分析必然成為今后研究的發(fā)展方向。
【參考文獻(xiàn)】
[1]Glagov S, Zarins C, Giddens P, et al. Haemodynamics andatherosclerosis —insights and perspectives gained from studies of humanarteries. Arch Pathology Lab Medicine, 1988, 112: 1018-1031.
[2]Cecchi E, Giglioli C, Valente S, et al. Role ofhemodynamic shear stress in cardiovascular disease. Atherosclerosis, 2011, 214:249-256.
[3]Langille BL. Arterial remodeling: relation tohemodynamics. Can J Physiol Pharmacol, 1996, 74:834-841.
[4]Ku N, Giddens P, Zarins K, et al. Pulsatile flow andatherosclerosis in the human carotid bifurcation: positive correlation betweenplaque location and low and oscillating shear stress. Atherosclerosis, 1985, 5:293-302.
[5]Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotidbifurcation atherosclerosis. Quantitative correlation of plaque localizationwith flow velocity profiles and wall shear stress. Circ Res, 1983, 53:502-514.
[6]Zhang C, Xie S, Li S, et al. Flow patterns and wall shearstress distribution in human internal carotid arteries: the geometric effect onthe risk for stenoses. J Biomech, 2012,45:83-89.
[7]張致身. 人腦血管解剖與臨床.北京:科學(xué)技術(shù)文獻(xiàn)出版社, 2004.
[8]Friedman MH, Deters OJ, Mark FF, et al. Arterial geometryaffects hemodynamics. A potential risk factor for atherosclerosis.Atherosclerosis, 1983,46:225-231.
[9]Nguyen KT, Clark CD,Chancellor TJ, et al. carotid geometryeffects on bloods flow and on risk for vascular disease. J Biomech, 2008,41:11-19.
[10]Sui B, Gao P, Lin Y, et al. Association of plaquecompositions and stenosis patterns in carotid bifurcation using MR imaging.Neurological Research, 2012, 34:366-372.
[11] Steinman DA. Image-based computational fluid dynamics: anew paradigm for monitoring hemodynamics and atherosclerosis. Curr Drug TargetsCardiovasc Haematol Disord, 2004,4:183-197.
[12]Martin D, Zaman A, Hacker J,et al. Analysis ofhaemodynamic factors involved in carotid atherosclerosis using computationalfluid dynamics. Br J Radiol, 2009,82:S33-38.
[13]Schirmer CM, Malek AM. Computational fluid dynamic characterizationof carotid bifurcation stenosis in patient-based geometries. Brain Behav, 2012,2:42-52.
[14]Gao H, Long Q, Graves M, et al. Carotid arterial plaque stressanalysis using fluid-structure interactive simulation based on in-vivo magneticresonance images of four patients. J Biomech, 2009,42:1416-1423.
[15]Jin SX, Shen LH, Nie P, et al. Endogenous renovascularhypertension combined with low shear stress induces plaque rupture inapolipoprotein E-deficient mice.Arterioscler Thromb Vasc Biol, 2012,32:2372-2379.
[16]Teng Z, He J, Degnan AJ, et al. Critical mechanicalconditions around neovessels in carotid atherosclerotic plaquemay promoteintraplaque hemorrhage. Atherosclerosis, 2012,223:321-326.
[17]Eshtehardi P, McDaniel MC, Suo J, et al. Association ofcoronary wall shear stress with atherosclerotic plaque burden, composition, anddistribution in patients with coronary artery disease. J Am Heart Assoc, 2012,1:e002543.
[18]AmanoY, Sekine T, Suzuki Y, et al. Time-resolved three-dimensional magneticresonance velocity mapping of chronic thoracic aortic dissection: a preliminaryinvestigation. Magn Reson Med Sci, 2011, 10: 93-99.
[19]HarloffA, Albrecht F, Spreer J, et al. 3D blood flow characteristics in the carotidartery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med,2009, 61:65-74.
[20]WetzelS, Meckel S, Frydrychowicz A, et al. In vivo assessment and visualization ofintracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T.AJNR Am J Neuroradiol, 2007,28: 433-438.
[21]vanOoij P, Powell AL, Potters WV, et al. Reproducibility and interobservervariability of systolic blood flow velocity and 3D wall shear stress derivedfrom 4D flow MRI in the healthy aorta. J Magn Reson Imaging, 2015 Jul 3 [Epubahead of print].
[22]Alastruey J, Parker KH, Peiró J, et al. Modelling the circleof Willis to assess the effects of anatomical variations and occlusions oncerebral flows. J Biomech, 2007, 40: 1794-1805.
[23]Almuhanna K, Zhao L, Kowalewski G, et al. Investigationof cerebral hemodynamics and collateralization in asymptomatic carotidstenoses. Conf Proc IEEE Eng Med Biol Soc, 2012,2012: 5618-5621.
[24]Kab?ak-Ziembicka A, Przew?ocki T, Pieniazek P, et al.Evaluation of cerebral circulation in patients with significant carotid arterystenosis. Kardiol Pol, 2005,6:381-389; discussion 390 (Abstract).
[25]Rutgers DR, Klijn CJ, Kappelle LJ, et al. A longitudinalstudy of collateral flow patterns in the circle of Willis and the ophthalmicartery in patients with a symptomatic internal carotid artery occlusion.Stroke, 2000,31: 1913-1920.
[26]Jeong HS, Song HJ, Lee JH, et al. Interpretationof TCD spectral patterns detected during carotid artery stent interventions. JEndovasc Ther, 2011,18: 518-526.
[27]MacIntosh BJ, Sideso E, Donahue MJ, et al. Intracranialhemodynamics is altered by carotid artery disease and after endarterectomy: adynamic magnetic resonance angiography study. Stroke, 2011,42:979-984.
[28]Bokkers RP, van Osch MJ, van der Worp HB, et al.Symptomatic carotid artery stenosis: impairment of cerebral autoregulationmeasured at the brain tissue level with arterial spin-labeling MR imaging.Radiology, 2010,256:201-208.
[29]Long Q, Luppi L, K?nig CS, et al. Study of the collateralcapacity of the circle of Willis of patients with severe carotid arterystenosis by 3D computational modeling. J Biomech, 2008, 41: 2735-2742.
[30]Kim CS, Kiris C, Kwak D, et al. Numerical simulation oflocal blood flow in the carotid and cerebral arteries under altered gravity. JBiomech Eng, 2006, 128: 194-202.
[31]Liang F, Fukasaku K, Liu H, et al. A computational modelstudy of the influence of the anatomy of the circle of willison cerebralhyperperfusion following carotid artery surgery. Biomed Eng Online, 2011,10:84.
[32]Tanaka H, Fujita N, Enoki T, et al. Relationship betweenvariations in the circle of Willis and flow rates in internal carotid andbasilar arteries determined by means of magnetic resonance imaging withsemiautomated lumen segmentation: reference data from 125 healthy volunteers.AJNR Am J Neuroradiol, 2006,27:1770-1775.
[33]Lal BK, Beach KW, Sumner DS. Intracranialcollateralization determines hemodynamic forces for carotid plaquedisruption. J Vasc Surg, 2011, 54: 1461-1471.
編輯 黃越
聯(lián)系客服