繼上一次分享我在《高數(shù)視角下的二次曲線(xiàn)論》中對(duì)彭塞列閉合定理證明之后,非常多頭條的朋友很感興趣,今天再次分享證明的高清完整版。
彭塞列(1788—1867)是法國(guó)著名的數(shù)學(xué)家、力學(xué)專(zhuān)家、射影幾何學(xué)創(chuàng)始人之一,射影幾何中的“交比”及“元窮遠(yuǎn)”的概念都是由其提出的。彭塞列定理的傳統(tǒng)描述方式:平面上給定兩條圓錐曲線(xiàn),若存在一封閉多邊形外切其中一條圓錐曲線(xiàn)且內(nèi)接另一條圓錐曲線(xiàn),則此封閉多邊形內(nèi)接的圓錐曲線(xiàn)上每一個(gè)點(diǎn)都是滿(mǎn)足這樣性質(zhì)的封閉多邊形的頂點(diǎn),且所有滿(mǎn)足此性質(zhì)的封閉多邊形的邊數(shù)相同。
截止到現(xiàn)在所有用初等方法證明此定理都是突出艱難的,下面這種證明也只是起到拋磚引玉的作用。
另外《高數(shù)視角下的二次曲線(xiàn)論》是用高等視角成體系講解二次曲線(xiàn)的書(shū)籍,共5章40節(jié),涵蓋了調(diào)和點(diǎn)列、極點(diǎn)極線(xiàn)、二次曲線(xiàn)的分類(lèi)與化簡(jiǎn)、仿射變換底層理論、二次曲線(xiàn)系的理論體系等。本書(shū)成體系還原圓錐曲線(xiàn)的底層知識(shí)架構(gòu)與命題邏輯,高中數(shù)學(xué)老師、同學(xué)及數(shù)學(xué)愛(ài)好者可以了解一下,也懇請(qǐng)多指正![作揖][作揖][作揖]
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶(hù)發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)
點(diǎn)擊舉報(bào)。