(南寧三中 許興華數(shù)學(xué))
在高二學(xué)習(xí)“不等式證明”這個內(nèi)容時(shí),很多同學(xué)還是覺得學(xué)習(xí)上碰到很多困難的。因?yàn)槲覀冎溃坏仁降淖C明,方法靈活多樣,它可以和很多內(nèi)容相互結(jié)合. 而在有時(shí)的高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個難點(diǎn),這個難點(diǎn)著重培養(yǎng)考生數(shù)學(xué)式子的變形能力,邏輯思維能力以及分析問題和解決問題的能力.
命題意圖:本題考查不等式證明、求最值函數(shù)思想、以及學(xué)生邏輯分析能力,屬于中上級題目.
知識依托:該題實(shí)質(zhì)是給定條件求最值的題目,所求a的最值蘊(yùn)含于恒成立的不等式中,因此需利用不等式的有關(guān)性質(zhì)把a呈現(xiàn)出來,等價(jià)轉(zhuǎn)化的思想是解決題目的突破口,然后再利用函數(shù)思想和重要不等式等求得最值.
命題意圖:本題是一道考查數(shù)學(xué)歸納法、不等式證明的綜合性題目,考查學(xué)生觀察能力、構(gòu)造能力以及邏輯分析能力,屬中上級的題目.
知識依托:本題是一個與自然數(shù)n有關(guān)的命題,首先想到應(yīng)用數(shù)學(xué)歸納法,另外還涉及不等式證明中的放縮法、構(gòu)造法等.
技巧與方法:本題證法一采用數(shù)學(xué)歸納法從n=k到n=k+1的過渡采用了放縮法;證法二先放縮,后裂項(xiàng),有的放矢,直達(dá)目標(biāo);而證法三運(yùn)用函數(shù)思想,借助單調(diào)性,獨(dú)具匠心,發(fā)人深省.
【證題妙計(jì)點(diǎn)撥】
1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法.
(1)比較法證不等式有作差(商)、變形、判斷三個步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述;如果作差以后的式子可以整理為關(guān)于某一個變量的二次式,則考慮用判別式法證.
(2)綜合法是“由因?qū)Ч保治龇ㄊ恰皥?zhí)果索因”。兩法相互轉(zhuǎn)換,互相滲透,互為前提,充分運(yùn)用這一辯證關(guān)系,可以增加解題思路,開擴(kuò)視野.
2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數(shù)單調(diào)性法、判別式法、數(shù)形結(jié)合法等.
換元法主要有三角代換,均值代換兩種,在應(yīng)用換元法時(shí),要注意代換的等價(jià)性.放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標(biāo)可以從要證的結(jié)論中考查.有些不等式,從正面證如果不易說清楚,可以考慮反證法.凡是含有“至少”“惟一”或含有其他否定詞的命題,則宜用反證法.
證明不等式時(shí),要依據(jù)題設(shè)、題目的特點(diǎn)和內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟、技巧和語言特點(diǎn).