1.探索小數乘法、除法的計算方法,能正確進行筆算,并能對其中的算理做出合理的解釋;
2.會用“四舍五入”法截取積是小數的近似值;培養從不同角度觀察,分析事物的能力;
3.理解用字母表示數的意義和作用;
4.理解簡易方程的意思及其解法;
5.在理解的基礎上掌握平行四邊形面積的計算公式,并會運用公式正確地計算平行四邊形的面積。
二、學習難點:
1.能正確進行乘號的簡寫,略寫;小數乘法的計算法則;
2.小數乘法中積的小數位數和小數點的定位,乘得的積小數位數不夠的,要在前面用0補足;
3.除數是整數的小數除法的計算方法;理解商的小數點要與被除數的小數點對齊的道理;
4.構建初步的空間想象力;
5.用字母表示數的意義和作用;
6.多邊形面積的計算。
三、知識點概念總結:
1.小數乘整數的意義:求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。
2.小數乘法法則:先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。
3.小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
4.除數是整數的小數除法計算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續除。
5.除數是小數的除法計算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。
6.積的近似數:四舍五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在于,采用四舍五入,能使被保留部分的與實際值差值不超過最后一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。
7.數的互化:(1)小數化成分數原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。(2)分數化成小數用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。(3)化有限小數一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能化成有限小數。(4)小數化成百分數只要把小數點向右移動兩位,同時在后面添上百分號。(5)百分數化成小數把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。(6)分數化成百分數通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。(7)百分數化成小數先把百分數改寫成分數,能約分的要約成最簡分數。
8.小數的分類:(1)有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、0.23都是有限小數。(2)無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……3.1415926……(3)無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。(4)循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如:3.555……0.0333……12.109109……;一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如:3.99……的循環節是“9”,0.5454……的循環節是“54”。
9.循環節:如果無限小數的小數點后,從某一位起向右進行到某一位止的一節數字循環出現,首尾銜接,稱這種小數為循環小數,這一節數字稱為循環節。把循環小數寫成個別項與一個無窮等比數列的和的形式后可以化成一個分數。
10.簡易方程:方程ax±b=c(a,b,c是常數)叫做簡易方程。
11.方程:含有未知數的等式叫做方程。(注意方程是等式,又含有未知數,兩者缺一不可)方程和算術式不同。算術式是一個式子,它由運算符號和已知數組成,它表示未知數。方程是一個等式,在方程里的未知數可以參加運算,并且只有當未知數為特定的數值時,方程才成立。
12.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。如果兩個方程的解相同,那么這兩個方程叫做同解方程。
13.方程的同解原理:(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
14.解方程:解方程,求方程的解的過程叫做解方程。
15.列方程解應用題的意義:用方程式去解答應用題求得應用題的未知量的方法。
16.列方程解答應用題的步驟:(1)弄清題意,確定未知數并用x表示;(2)找出題中的數量之間的相等關系;(3)列方程,解方程;(4)檢查或驗算,寫出答案。
17.列方程解應用題的方法:(1)綜合法先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已知到未知。(2)分析法先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
18.列方程解應用題的范圍:小學范圍內常用方程解的應用題:(1)一般應用題;(2)和倍、差倍問題;(3)幾何形體的周長、面積、體積計算;(4)分數、百分數應用題;(5)比和比例應用題。
19.平行四邊形的面積公式:底×高(推導方法如圖);如用“h”表示高,“a”表示底,“S”表示平行四邊形面積,則S平行四邊形=ah
20.三角形面積公式:S△=1/2*ah(a是三角形的底,h是底所對應的高)
21.梯形面積公式:(1)梯形的面積公式:(上底+下底)×高÷2.用字母表示:(a+b)×h÷2(2)另一計算公式:中位線×高用字母表示:l·h(3)對角線互相垂直的梯形:對角線×對角線÷2.
一、學習目標:
1.理解分數的意義和基本性質,會比較分數的大小,會把假分數化成帶分數或整數,會進行整數、小數的互化,能夠比較熟練地進行約分和通分;
2.掌握因數和倍數、質數和合數、奇數和偶數等概念,以及2、3、5的倍數的特征;會求100以內的兩個數的最大公因數和最小公倍數;
3.理解分數加、減法的意義,掌握分數加、減法的計算方法,比較熟練地計算簡單的分數加、減法,會解決有關分數加、減法的簡單實際問題;
4.知道體積和容積的意義以及度量單位,會進行單位之間的換算,感受有關體積和容積單位的實際意義;
5.結合具體情境,探索并掌握長方體和正方體的體積和表面積的計算方法,探索某些實物體積的測量方法;
6.能在方格紙上畫出一個圖形的軸對稱圖形,以及將簡單圖形旋轉90度;欣賞生活中的圖案,靈活運用平移、對稱和旋轉在方格紙上設計圖案;
7.通過豐富的實例,理解眾數的意義,會求一組數據的眾數,并解釋結果的實際意義;根據具體的問題,能選擇適當的統計量表示數據的不同特征;
8.認識復式折線統計圖,能根據需要選擇合適的統計圖表示數據。
二、學習難點:
1.用軸對稱的知識畫對稱圖形;
2.確區別平移和旋轉的現象,并能在方格紙上畫出一個簡單圖形沿水平方向、豎直方向平移后的圖形;
3.理解因數和倍數的意義;因數和倍數等概念間的聯系和區別;正確判斷一個常見數是質數還是合數;
4.長方體表面積的計算方法;長方體、正方體體積計算;
5.理解、歸納分數與除法的關系;用除法的意義理解分數的意義;
6.理解真分數和假分數的意義及特征;
7.理解和掌握分數和小數互化的方法。
三、知識點概括總結:
1.軸對稱:如果一個圖形沿一條直線折疊,直線兩側的圖形能夠互相重合,這個圖形就叫做軸對稱圖形,這時,我們也說這個圖形關于這條直線(成軸)對稱。對稱軸:折痕所在的這條直線叫做對稱軸。如下圖所示:
2.軸對稱圖形的性質:把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應點。軸對稱和軸對稱圖形的特性是相同的,對應點到對稱軸的距離都是相等的。
3.軸對稱的性質:經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。這樣我們就得到了以下性質:(1)如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。(2)類似地,軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。(3)線段的垂直平分線上的點與這條線段的兩個端點的距離相等。(4)對稱軸是到線段兩端距離相等的點的集合。
4.軸對稱圖形的作用:(1)可以通過對稱軸的一邊從而畫出另一邊;(2)可以通過畫對稱軸得出的兩個圖形全等。
5.因數:整數B能整除整數A,A叫作B的倍數,B就叫做A的因數或約數。在自然數的范圍內例:在算式6÷2=3中,2、3就是6的因數。
6.自然數的因數(舉例):6的因數有:1和6,2和3.10的因數有:1和10,2和5.15的因數有:1和15,3和5.25的因數有:1和25,5.
7.因數的分類:除法里,如果被除數除以除數,所得的商都是自然數而沒有余數,就說被除數是除數的倍數,除數和商是被除數的因數。我們將一個合數分成幾個質數相乘的形式,這樣的幾個質數叫做這個合數的質因數。
8.倍數:對于整數m,能被n整除(n/m),那么m就是n的倍數。如15能夠被3或5整除,因此15是3的倍數,也是5的倍數。一個數的倍數有無數個,也就是說一個數的倍數的集合為無限集。注意:不能把一個數單獨叫做倍數,只能說誰是誰的倍數。
9.完全數:完全數又稱完美數或完備數,是一些特殊的自然數。它所有的真因子(即除了自身以外的約數)的和(即因子函數),恰好等于它本身。
10.偶數:整數中,能夠被2整除的數,叫做偶數。
11.奇數:整數中,能被2整除的數是偶數,不能被2整除的數是奇數,
12.奇數偶數的性質:關于奇數和偶數,有下面的性質:(1)奇數不會同時是偶數;兩個連續整數中必是一個奇數一個偶數;(2)奇數跟奇數和是偶數;偶數跟奇數的和是奇數;任意多個偶數的和都是偶數;(3)兩個奇(偶)數的差是偶數;一個偶數與一個奇數的差是奇數;(4)除2外所有的正偶數均為合數;(5)相鄰偶數最大公約數為2,最小公倍數為它們乘積的一半。(6)奇數的積是奇數;偶數的積是偶數;奇數與偶數的積是偶數;(7)偶數的個位上一定是0、2、4、6、8;奇數的個位上是1、3、5、7、9.
13.質數:指在一個大于1的自然數中,除了1和此整數自身外,沒法被其他自然數整除的數。
14.合數:比1大但不是素數的數稱為合數。1和0既非素數也非合數。合數是由若干個質數相乘而得到的。質數是合數的基礎,沒有質數就沒有合數。
15.長方體:由六個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫長方體.長方體的任意一個面的對面都與它完全相同。
16.長、寬、高:長方體的每一個矩形都叫做長方體的面,面與面相交的線叫做長方體的棱,三條棱相交的點叫做長方體的頂點,相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
17.長方體的特征:(1)長方體有6個面,每個面都是長方形,至少有兩個相對的兩個面完全相同。特殊情況時有兩個面是正方形,其他四個面都是長方形,并且完全相同。(3)長方體有12條棱,相對的棱長度相等。可分為三組,每一組有4條棱。還可分為四組,每一組有3條棱。(3)長方體有8個頂點。每個頂點連接三條棱。(4)長方體相鄰的兩條棱互相(相互)垂直。
18.長方體的表面積:因為相對的2個面相等,所以先算上下兩個面,再算前后兩個面,最后算左右兩個面。設一個長方體的長、寬、高分別為a、b、c,則它的表面積S:S=2ab+2bc+2ca=2(ab+bc+ca)
19.長方體的體積:長方體的體積=長×寬×高設一個長方體的長、寬、高分別為a、b、c,則它的體積V:V=abc=Sh
20.長方體的棱長:長方體的棱長之和=(長+寬+高)×4長方體棱長字母公式C=4(a+b+c)相對的棱長長度相等長方體棱長分為3組,每組4條棱。每一組的棱長度相等
21.正方體:側面和底面均為正方形的直平行六面體叫正方體,即棱長都相等的六面體,又稱“立方體”、“正六面體”。正方體是特殊的長方體。
22.正方體的特征:(1)有6個面,每個面完全相同。(2)有8個頂點。(3)有12條棱,每條棱長度相等。(4)相鄰的兩條棱互相(相互)垂直。
23.正方體的表面積:因為6個面全部相等,所以正方體的表面積=一個面的面積×6=棱長×棱長×6設一個正方體的棱長為a,則它的表面積S:S=6×a×a或等于S=6a2
24.正方體的體積:正方體的體積=棱長×棱長×棱長;設一個正方體的棱長為a,則它的體積為:V=a×a×a
25.正方體的展開圖:正方體的平面展開圖一共有11種。
26.分數:把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫分數。表示這樣的一份的數叫分數單位。
27.分數分類:分數可以分成:真分數,假分數,帶分數,百分數
28.真分數:分子比分母小的分數,叫做真分數。真分數小于一。如:1/2,3/5,8/9等等。真分數一般是在正數的范圍內研究的。
29.假分數:分子大于或者等于分母的分數叫假分數,假分數大于1或等于1.假分數通常可以化為帶分數或整數。如果分子和分母成倍數關系,就可化為整數,如不是倍數關系,則化為帶分數。
30.分數的基本性質:分數的分子和分母同時乘以或除以一個不為0的數,分數的值不變。
31.約分:把一個分數化成和它相等,但分子、分母都比較小的分數,叫做約分
32.公因數:在兩個或兩個以上的自然數中,如果它們有相同的因數,那么這些因數就叫做它們的公因數。任何兩個自然數都有公因數1.(除零以外)而這些公因數中最大的那個稱為這些正整數的最大公因數。
33.通分:根據分數的基本性質,把幾個異分母分數化成與原來分數相等的且分母相同的分數,叫做通分。
34.通分方法:(1)求出原來幾個分數的分母的最小公倍數(2)根據分數的基本性質,把原來分數化成以這個最小公倍數為分母的分數
35.公倍數:指在兩個或兩個以上的自然數中,如果它們有相同的倍數,這些倍數就是它們的公倍數。這些公倍數中最小的,稱為這些整數的最小公倍數
36.分數加減法:(1)同分母分數相加減,分母不變,即分數單位不變,分子相加減,最后要化成最簡分數。(2)異分母分數相加減,先通分,即運用分數的基本性質將異分母分數轉化為同分母分數,改變其分數單位而大小不變,再按同分母分數相加減法去計算,最后要化成最簡分數。
37.統計圖:復式折線統計圖是用一個單位長度表示一定的數量,根據數量的多少描出各點,然后把各點用線段順次連接起來,以折線的上升或下降來表示統計數量增減變化。折線統計圖不但可以表示出數量的多少,而且還能夠清楚的表示出數量增減變化的情況。