疲勞破壞是工程結構中最常見的失效形式之一,據統計,占各類機械零件破壞總數的80%到90%都是由疲勞斷裂引起的,所造成的直接經濟損失占美、日、歐洲共同體等國家每年國民生產總和的6%到8%左右[1]。此外,疲勞破壞在遠低于強度極限的載荷下也會發生,由此會造成極為嚴重的后果,如圖 1所示,1842年發生的凡爾賽鐵路事故,調查結果表明由于機車軸在循環載荷下發生疲勞破壞,從而導致牽引機車脫軌[2]。
為了充分發揮材料性能與保證結構工作可靠,需要開展材料在交變載荷下的疲勞試驗,對材料疲勞性能進行準確評估。因此,了解相關疲勞試驗測試和分析方法,對日后材料性能分析和結構設計具有指導意義。
1. 疲勞的分類
根據研究對象、載荷條件、環境和介質情況,疲勞有多種分類方法。常見的疲勞分類如表 1所示。
表 1疲勞分類
1.1. 高周疲勞
高周疲勞是指材料或結構在低于其屈服強度的循環應力作用下,經過10^4~10^5次以上的循環產生的失效。材料主要發生彈性變形,因此高周疲勞也稱為應力疲勞。材料的高周疲勞性能,用作用應力S與到破壞時的壽命N之間的關系描述。特別地,當應力比R=-1時,即對稱恒幅循環載荷下,試驗給出的應力-壽命曲線,是材料的基本疲勞性能曲線,稱為S-N曲線或W?hler曲線,如圖 2所示[3]。
由S-N曲線可知,在給定的應力比下,應力越小,壽命越長。當應力S小于某極限值時,試件不發生破壞,壽命趨于無限長,此時所對應的的應力S的極限值 稱為材料的疲勞極限。由于疲勞極限是由試驗給出的,試驗又不可能一直做下去,故在許多試驗研究的基礎上,“無限長”一般被定義為[4]:鋼材——10^7次循環;焊接件——2×10^6次循環;有色金屬,10^8次循環,所對應的應力稱為材料的條件疲勞極限。滿足S<Sf 的設計,即無限壽命設計。
對于試驗給出的S-N曲線,通常采用下述三種數學形式對其進行描述:
(1)冪函數形式
S^m?N=C (1)
m與C是與材料、應力比、加載方式等有關的參數,兩邊取對數,發現:
lgS=A+BlgN (2)
材料參數A=lgC/m ,B=-1/m ,表示應力S與壽命N呈對數線性關系。
(2)指數式
e^mS?N=C (3)
兩邊取對數后成為
S=A+BlgN (4)
材料參數A=lgC/mlge , B=-1/mlge ,表示應力S與壽命N呈半對數線性關系。
(3)三參數式
〖(S-S_f)〗^m?N=C (5)
1.2. 低周疲勞
低周疲勞是指材料或構件在接近或超過其屈服強度的循環應力作用下,在低于10^4~10^5次塑性應變循環產生的失效。由于其應力超過彈性極限,產生較大塑性變形,應力應變不成比例,其主要參數是應變,也常稱為應變疲勞。對于具有明顯屈服階段的金屬材料來說,材料進入屈服后,應力保持不變,因此應力-壽命曲線(S-N曲線)不能用來描述低周疲勞性能,通常采用的是應變-壽命(ε-N )曲線,如圖 3所示。
由試驗記錄可知應變幅ε_a 、應力幅σ_a 和反向次數2N,將總應變幅ε_a寫成彈性應變幅ε_ea和塑性應變幅ε_pa兩部分,有ε_ea "=" σ_a/E,ε_pa "=" ε_a-ε_ea。分別畫出lg(ε_ea)-lg(2N_f),lg(ε_pa)-lg(2N_f)關系,如圖 3所示,呈對數線性關系,即:
ε_ea=(σ_f^')/E 〖(2N)〗^b (6)
ε_pa=ε_f^' 〖(2N)〗^c (7)
式中,σ_f^'稱為疲勞強度系數,E為彈性模量,b為疲勞強度指數,ε_f^'為疲勞延性系數,c為疲勞延性指數。
因此,ε"-" N曲線可寫為:
ε_a=ε_ea+ε_pa=(σ_f^')/E 〖(2N)〗^b+ε_f^' 〖(2N)〗^c (8)
上式即為Manson-Coffin公式,在長壽命階段,以彈性應變幅ε_ea為主;在短壽命階段,以塑性應變幅ε_pa為主。當ε_ea "=" ε_pa時,有
(σ_f^')/E 〖(2N)〗^b "=" ε_f^' 〖(2N)〗^c (9)
由此可求得
2N_T=〖(ε_f^' E/σ_f^')〗^(1?((b-c))) (10)
若壽命大于N_T,彈性應變為主,是應力疲勞;壽命小于N_T,塑性應變為主,是應變疲勞。因此,N_T稱為轉變壽命。
1.3. 腐蝕疲勞
腐蝕介質和循環應力(應變)的復合作用所導致的疲勞稱腐蝕疲勞。腐蝕疲勞與空氣中疲勞的區別主要在于:(1)在腐蝕疲勞過程中,除不銹鋼和滲氮鋼意外,機械零部件表面均變色;(2)腐蝕疲勞形成的裂紋數目較多,呈多裂紋;(3)腐蝕疲勞的S-N曲線沒有水平部分,即只存在條件腐蝕疲勞極限,如圖 4所示。
1.4. 蠕變
當材料被加熱到相應熔化溫度的40%以上,在恒定載荷條件下,試件的變形也會隨時間變化而緩慢增大,這一現象稱為蠕變現象[5]。對于大多數材料來說,蠕變過程可以被分為三個階段,如圖 5所示。
第一階段——圖中ab段,蠕變速率不斷下降,材料發生應變硬化,稱為不穩定蠕變階段;
第二階段——圖中bc段,蠕變速率達到最小值且近似保持不變,這通常是我們感興趣的階段,稱為穩定蠕變階段;
第三階段——圖中cd段,蠕變速率開始增大,并最終導致材料斷裂,稱為破壞階段。
為對蠕變曲線進行數學描述,通常采用冪次律方程和 θ方程。冪次律蠕變方程主要用于描述穩定蠕變階段,而 θ函數法則能建立整個蠕變階段的模型。即:
ε ?=Aσ^n exp(-Q/RT) (11)
ε=θ_1 (1-e^(-θ_2 t))+θ_3 (e^(θ_4 t)+1) (12)
材料在高溫條件下由于蠕變導致的額外變形,將會嚴重影響機械系統的工作運轉,如航空發動機中渦輪轉子葉片若蠕變變形過大,將會與機匣發生碰磨,造成災難性的后果。因此,有必要對材料的蠕變性能進行研究,一般采用蠕變極限和持久強度極限作為評價指標。
蠕變極限是指在規定溫度T下,在規定時間t內,使試件產生一定蠕變量 的最大應力,記為σ_(δ?t)^T ;
持久強度極限是指在規定溫度T下,在達到規定的持續時間t內不發生斷裂的應力值。以σ_t^T表示;
2. 疲勞試驗測試方法
金屬材料疲勞試驗是通過模擬結構或部件的實際工作狀況,在試驗室內測定材料的疲勞曲線,為設計、選材及選擇工藝提供依據的方法,用以估計結構或部件的疲勞特性和設法提高疲勞抗力,延遲或避免疲勞破壞。針對各類疲勞破壞,國內外制定了相應的測試標準。我國制定的涉及金屬疲勞試驗的國家標準如表 2所示。
編號 | 名稱 | 發布部門 | 實施日期 |
GB/T 24176-2009 | 金屬材料疲勞試驗數據統計方案與分析方法 | 國家質量監督檢驗檢疫總局 | 2010/4/1 |
GB/T 3075-2008 | 金屬材料疲勞試驗軸向力控制方法 | 國家質量監督檢驗檢疫總局 | 2009/4/1 |
GB/T 26077-2010 | 金屬材料 疲勞試驗軸向應變控制方法 | 國家質量監督檢驗檢疫總局 | 2011/10/1 |
GB/T 15248-2008 | 金屬材料軸向等幅低循環疲勞試驗方法 | 國家質量監督檢驗檢疫總局 | 2008/10/1 |
GB/T 4337-2015 | 金屬材料疲勞試驗旋轉彎曲方法 | 國家質量監督檢驗檢疫總局 | 2016/6/1 |
GB/T 12443-2007 | 金屬材料扭應力疲勞試驗方法 | 國家質量監督檢驗檢疫總局 | 2008/6/1 |
YB/T 5345-2014 | 金屬材料滾動接觸疲勞試驗方法 | 工業和信息化部 | 2014/10/1 |
GB/T 20120.1-2006 | 金屬和合金的腐蝕 腐蝕疲勞試驗 第1部分:循環失效試驗 | 國家質量監督檢驗檢疫總局 | 2006/9/1 |
GB/T 20120.2-2006 | 金屬和合金的腐蝕 腐蝕疲勞試驗 第2部分:預裂紋試驗裂紋擴展試驗 | 國家質量監督檢驗檢疫總局 | 2006/9/2 |
GB/T 6398-2000 | 金屬材料疲勞裂紋擴展速率試驗方法 | 國家質量監督檢驗檢疫總局 | 2001/6/1 |
金屬材料疲勞試驗國家標準下載地址: https://pan.baidu.com/s/1hs6vYK0 密碼: 4p6y
參考文獻
[1] 趙少汴. 抗疲勞設計[M]. 北京:機械工業出版社,1994.
[2] https://en.wikipedia.org/wiki/Fatigue
[3] 聞邦椿. 機械設計手冊單行本. 疲勞強度與可靠性設計(第5版)[M]. 北京:機械工業出版社,2015.
[4] 陳傳堯. 疲勞與斷裂[M]. 武漢:華中科技大學出版社,2001.
[5] 穆霞英. 蠕變力學[M]. 西安:西安交通大學出版社, 1990: 3-5.
本文由材料人編輯部學術干貨組Aaron1504供稿,材料牛編輯整理。
歡迎優秀碩、博士生加入材料人編輯部學術干貨小組,一起傳播學術知識,展現你的才華,助力材料科研,優秀稿件一經錄用,我們會奉上稿酬,趕快私信管理員負責人“淡年華( QQ:601416321)”報名吧!歡迎各大課題組到材料人宣傳科技成果并對文獻進行深入解讀,投稿郵箱tougao@cailiaoren.com。