看到一篇文章做了這兩個數據,正好可以比較一下,文章是 Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis
研究是 【Idiopathic Pulmonary Fibrosis 特發性肺纖維化】
數據下載
數據存放在:GEO GSE86618 and GSE94555
scRNA-seq 采用的是 Fluidigm C1 Single-Cell Auto Prep System , 測序詳情是:
Single-cell libraries are multiplexed and sequenced across 4 lanes of a NextSeq 500 platform (Illumina) using 75-bp single-end sequencing. On average, about 4–5 million reads were generated from each single-cell library.
放在:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86618 共540個細胞,數據量不小。
其中包括540 single cells from control (n = 3) and IPF patients (n = 6) reveals 4 major cell types (C1–C4), termed as
normal AT2 (C1, green)
indeterminate (C2, yellow)
basal (C3, red)
club/goblet (C4, blue) cells.
單細胞轉錄組的優點就是可以分群,但是本教程需要探索單細胞轉錄組的平均值是否與其bulk測序有相關性。
bulk轉錄組測序數據在:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94555 EPCAM+ (CD326+) and HTII-280+ epithelial cells from control and IPF donors were isolated from peripheral lung tissue by FACS and subjected to RNA sequencing (RNA-seq).
ID處理
GSM2478109IPF_1
GSM2478110IPF_2
GSM2478111IPF_3
GSM2478112CON_1
GSM2478113CON_2
GSM2478114CON_3
提供表達量矩陣的下載: GSE94555_IPF_Epithelial_Type2_RNA-seq_Reads_and_FPKM.xlsx 當然,也是可以下載原始數據走一波轉錄組分析流程得到表達矩陣進行差異分析的。
如果你不會上面這樣的簡單分析,那么你可能是需要去B站看我的視頻,搜索生信技能樹即可。
進行比較
首先需要使用R下載兩個表達矩陣,然后需要對應單細胞來源于的病人與bulk的病人,這樣就可以計算相關性啦!!!
本站僅提供存儲服務,所有內容均由用戶發布,如發現有害或侵權內容,請
點擊舉報。