聯(lián)合國(UN)曾預(yù)測,到2050年,全球超過65歲的人口將占總?cè)藬?shù)的六分之一,老齡化已然成為無法避免的趨勢。然而,隨醫(yī)療技術(shù)的進步,我們的平均壽命雖然得到顯著增加,但“健康壽命”并沒有跟上延壽的步伐,衰老及其伴隨的眾多慢性疾病仍是目前難以解決的人體負擔(dān)和醫(yī)療挑戰(zhàn)。
如何減緩衰老進程、促進“健康老齡化”(將機體健康功能維持到老年)成為了亟待解決的社會難題。
近日,《中國科學(xué):生命科學(xué)》英文版(SCIENCE CHINA Life Sciences)在線發(fā)表了由中國科學(xué)院動物研究所劉光慧和北京大學(xué)韓敬東統(tǒng)籌,中國科學(xué)院動物研究所宋默識、杭州師范大學(xué)劉俊平、武漢大學(xué)劉勇、四川大學(xué)肖智雄、南昌大學(xué)田小利、上海生物化學(xué)與細胞生物學(xué)研究所鄒衛(wèi)國、中國科學(xué)技術(shù)大學(xué)劉強、中國科學(xué)院昆明動物研究所孔慶鵬、同濟大學(xué)毛志勇、中國科學(xué)院上海營養(yǎng)與健康研究所孫宇、上海交通大學(xué)醫(yī)學(xué)院葉靜、廣州國際生物島實驗室胡蘋、清華大學(xué)王戈林、中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所田燁、中國科學(xué)院上海營養(yǎng)與健康研究所肖意傳、清華大學(xué)王建偉、中國科學(xué)院動物研究所曲靜、北京大學(xué)謝正偉、中國科學(xué)院北京基因組研究所張維綺、中國科學(xué)院微生物研究所王軍、中國科學(xué)院上海營養(yǎng)與健康研究所張亮、中國科學(xué)院北京基因組研究所任捷、中國科學(xué)技術(shù)大學(xué)宋曉元、首都醫(yī)科大學(xué)宣武醫(yī)院王思、北京干細胞與再生醫(yī)學(xué)研究院馬帥等53位科研人員聯(lián)合撰寫的衰老全景綜述——“The landscape of aging”。
該綜述參考了逾千篇衰老領(lǐng)域研究文獻,以超5萬字、20張插圖和5張表格的篇幅,從衰老機制、器官衰老特征和衰老干預(yù)三個方面系統(tǒng)總結(jié)了衰老領(lǐng)域的經(jīng)典理論和近年來衰老研究取得的重要進展,是目前國際上最為詳盡的衰老研究綜述之一。
圖:衰老全景圖。這張圖從細胞(底部)、組織、器官和系統(tǒng)(中間)、機體(頂部)各個層面描繪了衰老的全景。以及輔助衰老研究的新技術(shù)(左側(cè))和干預(yù)和恢復(fù)策略(右側(cè))
綜述發(fā)布后,時光派第一時間組織內(nèi)部集體學(xué)習(xí)。為方便廣大讀者、同道一起學(xué)習(xí)進步,現(xiàn)將內(nèi)部編譯資料分享如下(共1.9萬字,建議收藏)。
此外,為慶祝國內(nèi)衰老自主研究成果涌現(xiàn),編輯部奮戰(zhàn)中秋,日夜兼程,對綜述進行了全文翻譯(圖片、表格均已漢化,全文共13萬字,260余頁文檔,遠超微信推文字數(shù)限制),愿無償分享,領(lǐng)取方式詳見文末。
*時間倉促,難免疏漏,如有科學(xué)謬誤敬請專家與讀者朋友聯(lián)系時光派公眾號指正。
一直以來,細胞衰老被認為是衰老的主要原因,也是聯(lián)系衰老與諸多老齡化疾病之間的橋梁,然而細胞衰老和衰老的關(guān)系一直未得到明晰,因此,在本節(jié)中,派派將為大家一一揭示細胞衰老的分子機制。
No.1
干細胞衰老
什么是干細胞衰老
干細胞作為維持體內(nèi)穩(wěn)態(tài)和可塑性的萬能細胞,可以在體內(nèi)終生存在,然而隨年齡的增長,干細胞容易受到核DNA和線粒體DNA損傷、表觀遺傳變化、細胞周期改變、氧化應(yīng)激和線粒體功能障礙、蛋白質(zhì)穩(wěn)態(tài)破壞、信號通路改變、外部和系統(tǒng)性變化、自噬和代謝失調(diào)的多方影響,并積累損傷,最終導(dǎo)致衰老或功能衰退,因此干細胞衰老也被認為是機體衰老的重要表現(xiàn)之一[1,2]。
干細胞衰老機制
一方面,人體中每個干細胞在其整個生命周期中,都會經(jīng)歷數(shù)十萬次來自內(nèi)源性代謝副產(chǎn)物(如ROS和炎癥)和外源性物質(zhì)(如環(huán)境中的輻射和化學(xué)物質(zhì))的毒性損害,而這些物質(zhì)會進一步破壞DNA結(jié)構(gòu)和功能[3]。另一方面,隨年齡的增長,干細胞中DNA修復(fù)能力(如核苷酸切除修復(fù)(NER)在內(nèi)的修復(fù)途徑)逐漸下降,基因組損傷積累會損害正常干細胞的功能,破壞組織穩(wěn)態(tài)[4]。
并且,長壽相關(guān)的SIRT3和SIRT7蛋白也易隨干細胞衰老而減少,導(dǎo)致核膜蛋白和異染色質(zhì)相關(guān)蛋白的復(fù)合物的形成受損,而脂蛋白顆粒的載脂蛋白(APOE)又在衰老的干細胞中積累,并作為異染色質(zhì)的去穩(wěn)定劑而發(fā)揮作用,進一步驅(qū)動細胞衰老[5]。異染色質(zhì)穩(wěn)定性的變化,也會改變機體在表觀遺傳修飾方面的表達。
在細胞水平上,干細胞功能會因年齡增長而發(fā)生慢性炎癥而受損,并表現(xiàn)出一系列衰老標志物,包括衰老相關(guān)的β-半乳糖苷酶(SA-β-gal)活性升高、Rb-p16和p53-p21通路上調(diào)、持續(xù)性DNA損傷以及生長因子、蛋白酶和細胞因子分泌[6]。
在代謝水平上,衰老會使干細胞的自噬功能受損,導(dǎo)致蛋白質(zhì)穩(wěn)態(tài)的喪失,從而促進線粒體質(zhì)量和活性下降,線粒體的功能障礙反過來繼續(xù)誘導(dǎo)干細胞中發(fā)生蛋白質(zhì)聚集,造成代謝失調(diào)[7]。
圖:導(dǎo)致再生能力受損的干細胞衰老機制
No.2
衰老細胞與SASP
什么是SASP
衰老(senescence)是細胞的一種歸宿,其特征是生長潛力的喪失和表型改變,還會分泌由多種細胞因子、趨化因子、生物活性脂質(zhì)、損傷相關(guān)分子模式(DAMP,也稱警報素)共同組成的衰老相關(guān)分泌表型(SASP)。
在局部微環(huán)境中,SASP會非自主地作用于細胞,以改變相鄰細胞的生物學(xué)行為,造成負面影響[8]。然而,衰老細胞分泌的特異性SASP因子還可以參與組織修復(fù)、創(chuàng)面愈合和再生過程,因此在二元論與拮抗多效性進化理論中,SASP還可被看做衰老程序中的有益功能[9]。
SASP在衰老細胞中的調(diào)控機制
衰老細胞可以在轉(zhuǎn)錄、mRNA穩(wěn)定性、翻譯和細胞外分泌等多個水平上調(diào)節(jié)SASP的表達[10]。在細胞質(zhì)和核因子的調(diào)節(jié)過程中,轉(zhuǎn)錄因子GATA4在衰老細胞中積累并誘導(dǎo)上調(diào)IL1α和TRAF3IP2(編碼E3的泛素連接酶),而細胞膜又與促炎蛋白白細胞介素1α(IL-1α)相結(jié)合,它們共同激活炎癥相關(guān)NF-κB信號并放大SASP表達[11]。
此外,衰老細胞還可以通過先天免疫感應(yīng)機制來觸發(fā)SASP。釋放到細胞質(zhì)中的大量DNA片段通過募集平衡免疫反應(yīng)的cGAS酶,通過cGAS-STING通路招募IRF3進行磷酸化[12]。磷酸化的IRF3二聚體進入細胞核,激活NF-κB信號通路從而產(chǎn)生I型IFNs,并啟動其他免疫調(diào)節(jié)基因的轉(zhuǎn)錄,從而促進SASP的表達[13]。
圖:衰老細胞的分子特征
No.3
線粒體衰老
什么是線粒體
線粒體作為細胞的“發(fā)電站”,可產(chǎn)生大量的三磷酸腺苷(ATP)應(yīng)用于機體產(chǎn)能過程,其還可作為生物能量和生物合成等各種生物事件的信號樞紐,在大分子的生物合成、細胞凋亡、先天免疫反應(yīng)和對壓力的適應(yīng)中發(fā)揮重要作用[14]。
線粒體衰老的機制
衰老細胞中的線粒體,往往會出現(xiàn)生物合成減少、形態(tài)網(wǎng)絡(luò)改變、氧化磷酸化(OXPHOS)活性效率降低、mtDNA突變積累和ROS增加等生物反應(yīng)[15]。并且受到損傷的線粒體又會通過改變分解和合成代謝反應(yīng)的速率,從而導(dǎo)致ATP、煙酰胺腺嘌呤二核苷酸(NAD+)、α-酮戊二酸(α-KG)和ROS等代謝物發(fā)生含量變化,誘導(dǎo)細胞進一步衰老[16]。
ROS信號:線粒體進行呼吸作用產(chǎn)生并累積的ROS,會引起機體的氧化損傷和細胞衰老[17]。
線粒體未折疊蛋白反應(yīng)(UPR mt):普遍認為UPR mt是一種線粒體與細胞核間的信號通路,在衰老過程中,染色質(zhì)重塑和轉(zhuǎn)錄因子ATFS-1會誘導(dǎo)DNA編碼的線粒體熱休克蛋白和蛋白酶等基因群轉(zhuǎn)錄活化程序的應(yīng)激反應(yīng),重建線粒體蛋白質(zhì)穩(wěn)態(tài)[18]。
自噬:線粒體自噬是其控制質(zhì)量的一種途徑,線粒體在自噬調(diào)節(jié)劑PINK1和PARKIN缺失時,會引發(fā)線粒體自噬缺陷和各種病理性后果,線粒體自噬缺陷在目前被認為是衰老的潛在驅(qū)動力[19]。
圖:線粒體功能和衰老
No.4
代謝和內(nèi)質(zhì)網(wǎng)應(yīng)激(營養(yǎng)感知)
營養(yǎng)感知途徑誘導(dǎo)衰老
在衰老過程中,mTOR、AMPK和Sirtuins等營養(yǎng)傳感機制,和胰島素/IGF途徑激素信號途徑,以及內(nèi)質(zhì)網(wǎng)未折疊蛋白反應(yīng)(UPR)等應(yīng)激反應(yīng)途徑之間,發(fā)生持續(xù)的生理相互作用,多種內(nèi)源性代謝物和分泌蛋白通過信號傳導(dǎo),破壞機體的代謝穩(wěn)態(tài),誘導(dǎo)衰老[20]。
誘導(dǎo)衰老的機制
營養(yǎng)傳感機制:AMP活化蛋白激酶(AMPK)可被不同衰老干預(yù)下的細胞內(nèi)AMP/ADP的變化所激活,有研究表明可通過維持線粒體穩(wěn)態(tài)促進長壽,然而由于不同器官中AMPK蛋白復(fù)合物具有異質(zhì)性,因此哺乳動物的AMPK活化與衰老之間的關(guān)系仍待確認[21]。
而雷帕霉素靶蛋白(mTOR)可通過多種下游效應(yīng)器(包括Akt、IRS和4EBP)調(diào)節(jié)胰島素/IGF通路,對自噬和脂質(zhì)代謝發(fā)揮關(guān)鍵調(diào)節(jié)作用[22]。
此外,還有Sirtuins(SIRT1-7,一類NAD+依賴性脫乙酰酶)可以使胰島素/IGF信號傳導(dǎo)的主要成分(IRS、Akt和FoxO以及AMPK)去乙酰化,從而對線粒體活性和代謝穩(wěn)態(tài)發(fā)揮不同的調(diào)節(jié)作用[23]。
激素信號網(wǎng)絡(luò):胰島素/IGF通路可以通過體內(nèi)多種胰島素樣肽(ILP),觸發(fā)PI3K/Akt軸的激活來抑制代謝器官中FoxO蛋白的轉(zhuǎn)錄活性,從而協(xié)調(diào)全身的能量吸收和合成代謝能力。此外,胰島素/IGF信號還可以參與調(diào)節(jié)自噬、DNA修復(fù)、蛋白水解、蛋白質(zhì)翻譯、線粒體穩(wěn)態(tài)和抗逆性的基因表達程序[24]。
應(yīng)激反應(yīng)途徑:當(dāng)細胞受到內(nèi)源性或外源性應(yīng)激時,UPRER信號無法通過增加伴侶蛋白折疊、調(diào)控蛋白質(zhì)翻譯和增強相關(guān)蛋白酶體降解(ERAD)來維持細胞穩(wěn)態(tài),導(dǎo)致蛋白質(zhì)錯誤折疊或發(fā)生異常積累,從而誘導(dǎo)細胞衰老[25]。
圖:衰老和長壽代謝控制中的營養(yǎng)感知和內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)
No.5
表觀遺傳學(xué)
什么是表觀遺傳學(xué)定義的衰老
表觀遺傳學(xué)所定義的衰老是“在不改變主要DNA序列的條件下,基因表達的可遺傳和可逆變化,其中包括DNA甲基化、染色質(zhì)重塑、組蛋白修飾、組蛋白變體和非編碼RNA調(diào)控[26]。
表觀遺傳學(xué)涉及機制
DNA甲基化:DNA甲基化是由DNA甲基轉(zhuǎn)移酶(DNMT)進行的動態(tài)過程,并且在最近被公認為生物年齡的生物標志物。其中基于CpG位點的甲基化水平去估算生理年齡和細胞衰老程度的方式,被稱為“表觀遺傳時鐘”,有助于測量表觀遺傳漂移對人類組織和細胞類型衰老的累積影響[27]。
組蛋白變化:組蛋白乙酰化在調(diào)節(jié)衰老和促進長壽方面已被發(fā)現(xiàn)具有進化保守作用。例如,干細胞靜止和自我更新所必需的組蛋白乙酰轉(zhuǎn)移酶KAT7,被鑒定為細胞衰老的驅(qū)動因子和干預(yù)靶標;還有Sirtuins長壽蛋白,被發(fā)現(xiàn)參與多種信號通路(mTOR、NF-κB、FOXO和AMPK信號通路)從而調(diào)節(jié)各種物種細胞的衰老[28]。
染色質(zhì)重塑:在衰老細胞中,異染色質(zhì)因易受到抑制,而表現(xiàn)出結(jié)構(gòu)性組蛋白修飾(H3K9me3和H4K20me3)喪失和染色質(zhì)可及性增加,染色質(zhì)松弛的狀態(tài)促進發(fā)育受限基因的泄漏表達,并觸發(fā)IFN-I反應(yīng)和炎癥,進一步誘導(dǎo)衰老。
圖:衰老表觀基因組示意圖
No.6
端粒
為何可作為衰老標識
在衰老的過程中,由于細胞的末端DNA無法通過常規(guī)方法進行復(fù)制,導(dǎo)致端粒DNA經(jīng)歷一次次的細胞分裂過程而逐漸縮短,最終導(dǎo)致復(fù)制性衰老。也正是因為端粒一直處于不斷縮短的動態(tài)發(fā)育過程中,因此它也被認為是衰老的驅(qū)動力[29]。
端粒和衰老間的作用機制
不健康的生活方式、壓力、環(huán)境變化和感染等情況的出現(xiàn),均會導(dǎo)致端粒縮短或結(jié)構(gòu)受損,從而引發(fā)DNA損傷、氧化應(yīng)激、基因表達改變、基因組不穩(wěn)定性和細胞衰老等后果,并且當(dāng)含有受損端粒的細胞在體內(nèi)堆積時,又易導(dǎo)致激素失衡、炎癥、免疫缺陷、代謝紊亂和加速衰老等問題[30]。
Shelterin蛋白復(fù)合物:Shelterin蛋白復(fù)合物作為與端粒DNA結(jié)合的多亞基蛋白質(zhì)復(fù)合物,具有多重功能,對抗非程序性細胞衰老,例如可促進端粒復(fù)制并協(xié)調(diào)端粒酶募集,延緩端粒縮短[31]。然而當(dāng)Shelterin蛋白復(fù)合物發(fā)生功能障礙時,則會導(dǎo)致端粒和異染色質(zhì)損傷,進而誘導(dǎo)細胞衰老甚至凋亡[32]。
端粒縮短與損傷:端粒被稱為特別難以復(fù)制的區(qū)域(也被稱為HTR位點),在受到復(fù)制應(yīng)激時會產(chǎn)生染色體不穩(wěn)定性,不過它們進化出了特定的機制免受脆性提高的影響,然而未受到保護的端粒還是會因縮短導(dǎo)致基因組喪失原本的完整性,這些過程觸發(fā)細胞周期停滯、衰老、細胞凋亡等細胞過程[33]。
氧化應(yīng)激:目前,新興觀點認為端粒功能障礙和氧化應(yīng)激是直接耦合的現(xiàn)象,因為:(i)氧化應(yīng)激直接導(dǎo)致端粒縮短[34];(ii)端粒DNA上大量存在的8-oxoG(8-氧代鳥嘌呤,由鳥嘌呤氧化形成)很容易發(fā)生氧化效應(yīng),從而抑制端粒保護因子和端粒酶之間的結(jié)合,導(dǎo)致DNA斷裂和端粒受損[35];(iii)端粒功能障礙會激活p53信號通路,而p53信號通路會反過來結(jié)合并抑制PPARG共激活因子1α(PPARGC1A)和PPARGC1B啟動子,誘導(dǎo)線粒體功能障礙[36]。
圖:通過發(fā)育程序衰老的端粒生物學(xué)
No.7
基因組穩(wěn)定性
基因組不穩(wěn)定
隨年齡的增加,基因組穩(wěn)定性的保護機制逐漸遭到破壞,發(fā)生DNA損傷、反轉(zhuǎn)錄轉(zhuǎn)座子激活、端粒磨損和復(fù)制應(yīng)激等基因組不穩(wěn)定現(xiàn)象,從而加速衰老過程[37]。
基因組不穩(wěn)定機制
DNA損傷:衰老引起DNA修復(fù)相關(guān)調(diào)節(jié)因子或蛋白(如ATM、XRCC1和SIRT6)的表達減少,受損DNA的修復(fù)效率下降,隨年齡的增加,逐漸累積的受損DNA會進一步激活DDR(DNA損傷應(yīng)答)和p53信號通路的傳導(dǎo),最終誘導(dǎo)細胞衰老和凋亡[38,39]。
逆轉(zhuǎn)錄轉(zhuǎn)座子激活:人體中大約有45%的基因組都是由轉(zhuǎn)座因子組成,研究發(fā)現(xiàn),逆轉(zhuǎn)錄轉(zhuǎn)座子可能通過多種機制導(dǎo)致年齡相關(guān)性疾病的產(chǎn)生。(i)轉(zhuǎn)座事件可能會導(dǎo)致基因突變,進一步從遺傳學(xué)上影響附近基因的表達;(ii)LINE-1(最活躍的逆轉(zhuǎn)錄轉(zhuǎn)座子)的插入會破壞基因組穩(wěn)定性,在表觀遺傳上影響基因表達,并可激活炎癥反應(yīng);(iii)LINE-1的激活也與體細胞嵌合體有關(guān),并進一步影響神經(jīng)生物學(xué)過程[40]。
圖:基因組穩(wěn)定性和衰老的調(diào)節(jié)
通過第一章的學(xué)習(xí),我們已經(jīng)了解到,衰老與機體細胞穩(wěn)態(tài)和功能的下降有關(guān)。因此在本章中,文章將進一步為我們講述,隨年齡增長,身體中多個組織/器官會發(fā)生怎樣的特異性衰老,并探討它們的衰老機制和有效干預(yù)措施。
No.1
血管
血管老化
循環(huán)系統(tǒng)可為身體中所有細胞輸送氧氣和營養(yǎng)物質(zhì),并帶走組織器官中的二氧化碳和廢物,對于維持內(nèi)環(huán)境穩(wěn)態(tài)至關(guān)重要。但伴隨著年齡的增加,血管也開始呈現(xiàn)出形態(tài)、功能和分子標記方面的老化現(xiàn)象[41]。
在形態(tài)上,老化血管中的轉(zhuǎn)化細胞(失去正常細胞特點)開始無限增殖,血管中彈性蛋白的斷裂和膠原蛋白的沉積,使血管內(nèi)膜層增厚,導(dǎo)致血管腔被擴大[37]。在功能上,老化血管的硬度會增加,收縮壓升高,血管對內(nèi)外源刺激的反應(yīng)也逐漸下降[42]。在分子標識方面,老化血管上觀察到端粒磨損、其他衰老標志物(如p53、p21、p16、ROS)和SASP相關(guān)基因的異常表達等現(xiàn)象[41]。
干預(yù)措施
經(jīng)多年研究和臨床驗證,學(xué)界發(fā)現(xiàn)煙酰胺單核苷酸(NMN)、NR、二甲雙胍、白藜蘆醇和亞精胺等諸多小分子化合物,可有效預(yù)防與年齡相關(guān)的血管疾病[43]。
另有研究人員在血液置換研究中,將年輕血液中的血源性因子輸送至老年血液,發(fā)現(xiàn)老化血管的退化表型得到有效逆轉(zhuǎn)[44]。
目前,senolytics和干細胞療法也被證明可延緩血管老化并治療年齡相關(guān)的血管疾病[45]。
加強體力活動和進行熱量限制同樣有助于延緩血管老化[46]。
圖:血管衰老和干預(yù)
No.2
大腦細胞的特異性老化
大腦的功能在衰老過程中會體現(xiàn)出學(xué)習(xí)和記憶力的下降,而腦細胞,包括神經(jīng)元細胞和星形膠質(zhì)細胞等非神經(jīng)元細胞,也在衰老過程中表現(xiàn)出各自獨特的衰老特征[47]。
神經(jīng)元老化:神經(jīng)元是有絲分裂后期的細胞,必須依賴除增殖停滯以外的其他基礎(chǔ)才能被誘導(dǎo)衰老。其衰老特征則表現(xiàn)為磷酸化p38/MAPK(p-p38)、γH2AX表達升高,SA-β-Gal活性增加,以及脂褐質(zhì)積累[48]。
星形膠質(zhì)細胞老化:星形膠質(zhì)細胞上的主要成分,也是反應(yīng)性星形膠質(zhì)細胞的標志——膠質(zhì)纖維酸性蛋白(GFAP),其表達會隨著年齡的增長而增加,從而使星形膠質(zhì)細胞出現(xiàn)增生現(xiàn)象[49]。研究發(fā)現(xiàn),在衰老過程中,星形膠質(zhì)細胞的表型變化會使其從靜止?fàn)顟B(tài)過渡到活躍狀態(tài),引發(fā)記憶功能受損;而星形膠質(zhì)細胞衰老引起的代謝變化也會引發(fā)神經(jīng)元代謝紊亂。
小膠質(zhì)細胞老化:小膠質(zhì)細胞作為大腦中的常駐免疫細胞,衰老大腦中的小膠質(zhì)細胞表現(xiàn)出炎癥特征增加,包括促炎細胞因子,如TNFα、IL-1β和IL-6[50]。此外,隨著年齡的增長,小膠質(zhì)細胞的形態(tài)會發(fā)生去枝化或變?yōu)榍驙睿矔铀俅竽X衰老進程。
圖:大腦中不同細胞類型的衰老特征
No.3
肺部
人體的肺部功能從35歲開始逐漸下降,并出現(xiàn)氣體交換受損、粘液纖毛清除力降低和免疫能力下降等肺部功能障礙[51]。其中,肺泡上皮細胞(尤其是I型肺泡上皮細胞(AEC1)和II型肺泡上皮細胞(AEC2)都容易受到與衰老相關(guān)的可持續(xù)性影響,使它們的數(shù)量減少,且間質(zhì)沉積增加。目前已有研究表明,隨年齡的增加,AEC1的增殖與凋亡比率會隨之變化,并且AEC2的再生、自我更新和分化能力會逐漸下降[52]。
同時,協(xié)調(diào)肺部免疫反應(yīng)的肺泡巨噬細胞(AMs)和間質(zhì)巨噬細胞(IM),也隨著年齡的增長,表現(xiàn)出吞噬和清除能力下降、干擾素(IFN)受到頑固性激活等免疫降低跡象,并且肺部免疫細胞出現(xiàn)炎細胞浸潤,從而誘導(dǎo)衰老[53]。
當(dāng)然,還有更多的機制研究表明,端粒縮短、DNA損傷應(yīng)答(DDR)、表觀遺傳改變、氧化應(yīng)激反應(yīng)和線粒體功能障礙所引起的干細胞衰竭,也是導(dǎo)致肺部細胞衰老的一大誘因[54]。
圖:肺衰老的細胞表型
No.4
心臟
心臟老化
首先,心臟中占總重一半以上并維持收縮和舒張功能的心肌細胞,其數(shù)量會隨年齡的增加而逐漸減少,與此同時,成纖維細胞的不斷增殖又導(dǎo)致膠原蛋白沉淀的累積,大大促進了心臟纖維化和心臟功能障礙[55]。
此外,心臟衰老還涉及多種分子機制。其中最核心的原因就是蛋白質(zhì)穩(wěn)態(tài)失衡,隨時間的增加,錯誤折疊蛋白逐漸增多、積累,導(dǎo)致伴侶蛋白、蛋白酶體、核糖體和線粒體蛋白的表達降低,和氧化應(yīng)激相關(guān)蛋白的上調(diào)[56]。此時,大量產(chǎn)生的ROS開始伺機而動,打破線粒體融合和裂變的平衡,進一步破壞線粒體穩(wěn)態(tài),使心臟線粒體功能障礙和氧化損傷的風(fēng)險增加[57]。
終生積累的遺傳損傷會成為心臟衰老的導(dǎo)火索。除端粒縮短和端粒功能障礙已被證實會影響心臟的正常生理功能外,表觀遺傳改變也被發(fā)現(xiàn)會破壞心臟的氧化應(yīng)激、血管生成和細胞代謝相關(guān)的轉(zhuǎn)錄程序,誘發(fā)炎癥,從而促進心臟衰老[58]。
干預(yù)措施
目前,靶向線粒體功能障礙的抗氧化肽,已被證明可有效改善高血壓性心肌病,而在動物模型中,熱量限制也被發(fā)現(xiàn)對緩解心臟衰老和改善纖維化程度有顯著療效[59]。此外,還有小分子化合物、靶向抗衰老藥物、干細胞療法、不同形式的運動等多種心臟抗衰干預(yù)方法也正被應(yīng)于臨床。
表:https://clinicaltrials.gov/中列舉出的與年齡相關(guān)的心臟病的臨床實驗數(shù)據(jù)
No.5
骨骼
骨骼衰老
骨骼結(jié)構(gòu)會隨著年齡的增長而退化,作為衰老過程的一個普遍特征,骨骼中膠原蛋白間的交聯(lián)就會在衰老過程中發(fā)生變化,或者因晚期糖基化終產(chǎn)物的積累而受損。然而對于骨骼來說,發(fā)生在其上最常見的衰老相關(guān)的衰退性疾病,還當(dāng)屬骨質(zhì)疏松癥[84]。
在細胞層面,在絕經(jīng)后骨質(zhì)疏松癥模型中發(fā)現(xiàn),破骨細胞分泌的semaphin4D特異性抗體(SEMA4D)會介導(dǎo)破骨細胞與成骨細胞之間的交流,從而有效刺激成骨細胞的骨形成。并且,衰老過程會引起人體骨骼干細胞中去乙酰化酶1(SIRT1)表達的缺失,降低骨骼干細胞的分化潛能;此外,機體內(nèi)已被老化的免疫細胞也會分泌促進炎癥的大鈣素(GCA),使骨骼細胞受到炎癥浸潤而變性,大大增加骨骼細胞維持青春的難度[85]。
在基因?qū)用妫?dāng)DNA甲基化或組蛋白乙酰化和甲基化的改變時,例如H3K9me和H3K27me3的缺失,可誘導(dǎo)導(dǎo)致衰老過程的表觀遺傳變化[86]。
干預(yù)措施
長期以來,雙膦酸鹽和地諾塞麥這類可降低骨骼吸收、抑制破骨細胞活性的藥物,被廣泛應(yīng)用于骨質(zhì)疏松癥的治療,但它們同時具有骨形成減少和骨脆性增加的副作用。
目前,干細胞療法已作為治療骨質(zhì)疏松癥的有效方法。然而骨骼治療過程中仍會存在炎癥性衰老,影響干細胞活性。因此學(xué)界嘗試在骨科手術(shù)之前選擇性服用如非甾體類的抗炎藥(NSAID),以提高干細胞數(shù)量,并已在阻斷骨細胞衰老、提高骨細胞合成代謝和提高干細胞數(shù)量等方面初見成效[87]。
當(dāng)然,學(xué)界特別建議絕經(jīng)后的女性和老年男性要注重日常運動[88],可以在提高骨骼強度的同時減少脂肪量。
圖:導(dǎo)致骨衰老的細胞機制示意圖
No.6
骨骼肌
骨骼肌是由單核細胞和多核細胞(肌纖維)共同組成的細胞群,而骨骼肌細胞的衰老會引發(fā)肌肉質(zhì)量和功能下降,并導(dǎo)致機體運動、呼吸、視力、熱平衡、代謝穩(wěn)態(tài)和免疫調(diào)節(jié)的失調(diào)[89]。
從細胞層面來看。隨著年齡的增長,身為多核細胞的肌纖維的大小和收縮能力會隨之下降,導(dǎo)致肌肉質(zhì)量和功能的整體缺失。衰老的肌纖維中出現(xiàn)的代謝失衡(合成代謝減少和分解代謝增加)現(xiàn)象,導(dǎo)致肌原纖維蛋白被降解,進而會加重骨骼肌衰老[90]。
而單核細胞中,具有高度分化能力的肌肉干細胞(MuSCs),其上的衰老相關(guān)p38、MAPK信號通路被激活后,細胞周期抑制劑p16(INK4)也得到提高,導(dǎo)致MuSCs發(fā)生不對稱分裂和自我更新受損,最終使骨骼肌的再生能力急劇下降[91]。
從基因?qū)用鎭砜础?jù)統(tǒng)計,人體的MuSCs每年都會有13個基因組發(fā)生突變,隨年齡的增長,不斷累積的DNA突變導(dǎo)致DNA損傷效應(yīng),這時,DNA甲基化開始調(diào)節(jié)肌源基因的表達,抑制性染色質(zhì)修飾基因H3K27me3在MuSCs中逐漸增加,MuSCs中的部分重要功能基因被抑制,最終使MuSCs出現(xiàn)功能障礙[92]。
而除了內(nèi)源性變化引發(fā)骨骼肌細胞衰老外,其他微環(huán)境因子如NF-κB、IL-33和CCL-2水平的變化也會導(dǎo)致MuSCs的增殖和分化缺陷,導(dǎo)致衰老過程中肌肉損傷后的再生能力下降[93]。
圖:骨骼肌衰老的主要機制
No.7
皮膚
皮膚作為人體最外層、最直觀的器官,承擔(dān)著保護、溫度調(diào)節(jié)、感覺、免疫、社交等多種重要功能[45]。在組織學(xué)水平上,它的老化被分為以下形式:
真皮老化:皮膚中累積的活性氧可以刺激基質(zhì)金屬蛋白酶(MMPs)的表達,從而降解在皮膚彈性中起重要作用的膠原蛋白和彈性蛋白,使皮膚出現(xiàn)皺紋、松弛和下垂現(xiàn)象[94]。
表皮老化:目前,已在衰老的表皮細胞中發(fā)現(xiàn)了被激活的炎癥基因,然而引發(fā)表皮衰老的機制仍未得到充分證實,因此有待繼續(xù)研究[95]。
毛囊老化:研究發(fā)現(xiàn),DNA損傷可導(dǎo)致衰老的毛囊細胞中的COL17A1蛋白被水解,導(dǎo)致頭發(fā)的生長速度下降并開始脫落[96]。并且在衰老過程中,黑色素細胞也因受到內(nèi)源和外源性損傷使頭發(fā)變白[97]
圖:皮膚衰老特征和機制的示意圖
No.8
生殖系統(tǒng)
生殖系統(tǒng)衰老
生殖系統(tǒng)可以通過維持機體內(nèi)分泌的穩(wěn)態(tài),保證健康后代的孕育并協(xié)調(diào)生理功能。對于女性來說,生殖系統(tǒng)的衰老往往出現(xiàn)在更年期,會表現(xiàn)在內(nèi)分泌失調(diào)和代謝疾病風(fēng)險的提高方面[98]。而男性的生殖衰老,則體現(xiàn)在隨年齡的增長而逐漸下降的生育能力上[99]。
女性生殖衰老:女性的生殖系統(tǒng)主要包括卵巢、輸卵管、子宮和陰道,其中,卵巢衰老被認為是導(dǎo)致女性生殖衰老的最關(guān)鍵因素。卵巢中數(shù)量有限的卵母細胞,其上的染色體凝聚力會隨著年齡的增長而發(fā)生自然退化,導(dǎo)致紡錘體在減數(shù)分裂期間出現(xiàn)并附著大量錯誤的動粒-微管(K-MT),從而發(fā)生染色體錯誤分離、染色單體過早分離和非整倍體頻率提高等現(xiàn)象,生殖能力隨之退化[100]。
此外,子宮在長期、周期性地暴露于雌激素環(huán)境中時,慢性膠原的逐漸沉積也會引發(fā)子宮擴張和子宮纖維化等老化現(xiàn)象[101]。
男性生殖衰老:男性生殖系統(tǒng)的主要器官包括睪丸、附睪、輸精管、前列腺和精囊,然而與女性不同的是,男性的生殖系統(tǒng)只會隨年齡的增長出現(xiàn)輕、中度的衰老跡象[102]。其中就包括睪丸功能障礙(管徑變窄、生精上皮變薄、基底膜增厚、馬賽克樣病變和纖維化增加)所引發(fā)的精子數(shù)量和質(zhì)量的下降,以及精子中出現(xiàn)DNA損傷及片段化、突變和非整倍體增加等遺傳質(zhì)量降低的情況[102]。
表:兩性生殖系統(tǒng)衰老的潛在機制
干預(yù)措施
女性:迄今為止,還沒有任何一款技術(shù)得到逆轉(zhuǎn)女性生殖衰老的臨床認證。然而,達沙替尼和槲皮素等抗衰老藥物已被發(fā)現(xiàn)可以有效去除卵巢中大量存在的ROS,并增強子宮的抗纖維化能力,因此,senotherapy也被認為是目前最有前途的干預(yù)措施[113]。此外,褪黑素也得到了增加生殖細胞端粒長度并減輕炎癥的實驗證實,還有線粒體替代療法、核基因組轉(zhuǎn)移和自體種系線粒體能量轉(zhuǎn)移(AUGMENT)等技術(shù)已在進行臨床安全性的評估[114]。
男性:多項研究表明,常見的口服抗氧化劑(如維生素 C、維生素 E、維生素 D、硒、葉酸、鋅和肉堿)均可有效改善精子質(zhì)量,褪黑素也可促進睪丸間質(zhì)細胞的生長、增殖和能量代謝,從而提高精子濃度[115]。此外,還有槲皮素或白藜蘆醇等抗衰補劑和藥物,被發(fā)現(xiàn)可降低睪丸脂質(zhì)過氧化程度并增加抗氧化酶活性。當(dāng)然,除了這些藥物治療方法外,睪酮替代療法也是一種常見的臨床干預(yù)措施[116]。
No.9
腸道和微生物菌群
腸道的衰老過程,往往會伴隨腸道菌群失調(diào)和腸道功能紊亂,而老化的腸道會體現(xiàn)出腸上皮干細胞(IESCs)過度增殖和功能障礙。而腸道衰老的另一個方面則是腸道屏障受損,其特征包含腸道通透性增加、結(jié)腸粘液層變薄和慢性炎癥水平升高等特征[117]。
IESCs是位于腸隱窩處底部的多能細胞,調(diào)控著上皮細胞的更新和維持腸道穩(wěn)態(tài),研究發(fā)現(xiàn),衰老果蠅腸道中存在IESCs的增殖升高和錯誤分化,以及ROS和ROS相關(guān)通路(如c-JunN-末端激酶(JNK)信號通路)的過度表達,這可能會破壞腸道穩(wěn)態(tài)[118]。
此外,隨年齡的變化,老化腸道內(nèi)的微生物菌群也易發(fā)生失調(diào),刺激腸道出現(xiàn)代謝紊亂,并提高患其他慢性疾病的風(fēng)險[119]。
圖:衰老的腸道和微生物群
No.10
免疫
衰老往往會伴隨諸多老齡化疾病的出現(xiàn),其原因就在于炎性的累積降低了機體對外來抗原和有害細胞的抵抗力,從而增加了患衰老相關(guān)疾病的風(fēng)險,因此,這種隨年齡的增加而引發(fā)的免疫功能障礙,被定義為生理性免疫衰老(PHIS)[120]。此外,還有一種通過病理性微環(huán)境誘導(dǎo)免疫細胞表現(xiàn)出同PHIS相似的衰老表型的途徑,被稱為病理性免疫衰老(PAIS)[121]。
PHIS的典型特征,表現(xiàn)為血液和組織中促炎標志物以及其他內(nèi)源性損傷產(chǎn)物(如ATP、尿酸或循環(huán)DNA)水平的提高(俗稱“炎癥”)。炎癥會促進細胞分泌IL-1、TNF、IL-6、IL-8、IL-13、IL-18、IFNα、IFNβ和TGF-β等一系列SASP,而SASP又可營造病理性微環(huán)境,導(dǎo)致免疫細胞群出現(xiàn)PAIS,從而促進疾病和衰老進展[120]。
圖:免疫衰老的誘因、特征和后果
No.11
造血干細胞
造血干細胞(HSC)的衰老,主要由復(fù)制應(yīng)激和DNA損傷、有毒副產(chǎn)物(如ROS)的積累、表觀遺傳修飾、微環(huán)境炎癥等生物過程間的相互作用所導(dǎo)致[121]。
復(fù)制應(yīng)激:HSC在衰老過程中由于受到內(nèi)源性和外源性的壓力,導(dǎo)致DNA出現(xiàn)一定程度的損傷,與年輕的HSC相比,衰老HSC具有相同的DNA修復(fù)能力,但功能潛力卻得到減弱,這表明衰老HSC的功能下降主要是因為復(fù)制應(yīng)激引起,而非DNA損傷[122]。
ROS累積:在衰老過程中,造血干細胞線粒體呼吸作用的降低,導(dǎo)致了ROS的顯著增加,而增多的ROS不僅會造成DNA的氧化損傷,還會降低蛋白質(zhì)合成和相關(guān)信號的傳導(dǎo),從而發(fā)生線粒體功能障礙,加速造血干細胞的衰老[123]。
表觀遺傳修飾:衰老HSC中H4K16ac的變化往往與核體積增加、核內(nèi)陷減少和11號染色體的分布相關(guān),而異染色質(zhì)的紊亂增加了染色質(zhì)的可及性和基因表達泄漏,從而破壞衰老HSC的分化潛能和再生能力[124]。
炎癥:與年齡相關(guān)的炎癥增加是促進造血干細胞衰老的主要驅(qū)動力之一,而且衰老還伴隨著多種促炎細胞因子(如TNF-α和IL-1β)的系統(tǒng)性水平升高,這也被稱為慢性炎性衰老。越來越多的研究表明,炎癥信號還可調(diào)節(jié)HSC增殖、分化、自我更新能力和衰老相關(guān)疾病[125]。
圖:HSC衰老的標志
了解衰老,除了能更好地打破我們對“衰”和“老”的未知恐懼,并以科學(xué)性、系統(tǒng)性的思想對待衰老外,還能有力地推進衰老干預(yù)研究的進行。衰老研究的目標之一,就是能夠?qū)崿F(xiàn)對各種與年齡相關(guān)疾病的預(yù)防或干預(yù),并延長健康壽命。
因此,本文也為我們總結(jié)了極具臨床應(yīng)用潛力的抗衰干預(yù)手段,例如使用基因療法改變與衰老相關(guān)的基因、清除衰老細胞、人工智能(AI)預(yù)測。除此之外,本文還對可預(yù)測衰老的新技術(shù)領(lǐng)域進行了展望。
No.1
基因療法
過去二十年間,基因編輯技術(shù)已能實現(xiàn)在基因組特定位置添加、刪除或改變核苷酸序列;如今,它的應(yīng)用拓展到了“延長壽命或健康期” [126]:
表:衰老干預(yù)的基因治療方法
目前,基因療法在靶向遞送策略仍然是一個重大挑戰(zhàn),因此也在一定程度上限制了基因療法的實際應(yīng)用[52]。本文認為,雖然取得了許多有力的數(shù)據(jù)支撐,但將基因療法運用于臨床實踐仍有很長的路要走。
No.2
抗衰藥物
隨著衰老研究的不斷深入,許多小分子在延緩衰老的同時也加深了人們對衰老過程和機制的認識。然而,衰老是一個由多因素共同作用的復(fù)雜過程。目前,被學(xué)界廣泛接受的衰老干預(yù)方向包括NAD+、VEGF、AMPK、衰老細胞、炎癥、FOXO家族、胰島素/IGF-1信號通路、PI3K-AKT信號通路、p16、p21等。下表列舉了當(dāng)前主要的衰老干預(yù)分子及其主要靶點:
表:抗衰藥物和補劑
No.3
人工智能
面對無可避免的衰老,除了盡可能延長機體的健康壽命外,如果能對年齡和適用方式進行正確的篩選和預(yù)測,也將助力實現(xiàn)對衰老的有效干預(yù)。目前,人工智能和系統(tǒng)生物學(xué)已開始應(yīng)用于抗衰藥物的篩選:
人工智能技術(shù),如卷積神經(jīng)網(wǎng)絡(luò)(CNN)和基于基因指紋和深度學(xué)習(xí)的藥效預(yù)測系統(tǒng)DLEPS,可根據(jù)各種組學(xué)數(shù)據(jù)尋找衰老特的普遍征,從而篩選出正確的抗衰藥物[148]。
系統(tǒng)生物學(xué)技術(shù),將表觀遺傳時鐘和定量組學(xué)數(shù)據(jù)進行同時開發(fā),預(yù)測個體的生物年齡,可以對不同程度的衰老針對性地進行藥物篩選[149]。
圖:基于人工智能和系統(tǒng)生物學(xué)的衰老干預(yù)藥物篩選的兩個平行和協(xié)同方向
文章認為,隨著數(shù)字化時代的到來,大眾對于衰老領(lǐng)域的輔助研究和藥物篩選的重視程度逐漸上升,未來,人工智能和生物學(xué)技術(shù)將會成為研究的熱門方向和大熱發(fā)展趨勢[45]。
No.4
新技術(shù)領(lǐng)域
隨技術(shù)的不斷進步,現(xiàn)在針對抗衰的干預(yù)也出現(xiàn)了諸多先進技術(shù),可以幫助我們更加深入地對單個分子到整個有機體的復(fù)雜衰老過程進行了解,并提供了一系列有效干預(yù)方案。
模型:
通過建立疾病和衰老相關(guān)的細胞、器官、組織和動物模型等,實現(xiàn)便捷的體外實驗操作,可快速進行衰老機制研究和干預(yù)手段評估[150]。
單細胞組學(xué)技術(shù):
衰老在不同個體、組織和細胞之間的體現(xiàn)具有極大差異,因此需要更精準的方式去剖析生物衰老中的異質(zhì)性[151]。迄今為止,單細胞RNA測序技術(shù)已廣泛應(yīng)用于衰老研究,并幫助我們揭示了衰老在跨組織和物種之間的相互影響[152]。盡管單細胞蛋白質(zhì)組學(xué)和代謝組學(xué)技術(shù)尚未應(yīng)用于衰老的研究領(lǐng)域,但文章認為,它們在未來極有望實現(xiàn)對衰老過程進行深入機制理解的有效手段。
成像技術(shù):
細胞衰老是一種復(fù)雜的現(xiàn)象,而成像技術(shù)可以最直觀了解細胞衰老的發(fā)生和進展過程。目前,用于檢測衰老細胞的主要成像技術(shù)是體內(nèi)探針(細胞衰老的一般生物標志物)的實時跟蹤[153]。此外,還有將成像結(jié)果與基因表達數(shù)據(jù)相結(jié)合的方式,也叫ST分析法,可以更加深入了解到細胞衰老的時空變化,目前,已應(yīng)用成熟的ST分析技術(shù)有:下一代測序技術(shù)(NGS)、現(xiàn)場測序技術(shù)(ISS)和現(xiàn)場基于雜交的測序技術(shù)(ISH)[154]。
算法:
將多組學(xué)數(shù)據(jù)結(jié)合機器學(xué)習(xí)算法,可以通過對豐富的數(shù)據(jù)資源的開發(fā),識別出潛在的生物標志物和干預(yù)目標,從而為衰老生物學(xué)的發(fā)展提供新見解[155]
時光派點評
在各領(lǐng)域研究學(xué)者的共同努力下,我們現(xiàn)在已經(jīng)進入了一個最好的老齡化研究時代,眾多預(yù)防、延緩甚至在某些情況下逆轉(zhuǎn)衰老跡象的方式均得到有力證實。雖然本世紀能否通過生物醫(yī)藥技術(shù)實現(xiàn)人類壽命的延長仍是一個懸而未決的問題,但派派和眾多學(xué)者們堅信,預(yù)防衰老、延緩人類健康壽命終必會在不久的將來真正實現(xiàn)。
愿世人“年老而不衰,智盡而不亂”。
由于篇幅所限,無法傳達更多精彩內(nèi)容,我們特將研究全文翻譯,以饗大眾。
時光派會員可在會員群中直接獲取,非會員需轉(zhuǎn)發(fā)本文到朋友圈(無分組)保持1小時或轉(zhuǎn)發(fā)到2個相關(guān)微信群,并截圖發(fā)給時光派任意工作人員(未添加過好友的讀者請?zhí)砑游⑿牛簍imepie06)。
掃碼添加助理
—— TIMEPIE ——
參考文獻
[1]C López-Otín, Blasco, M. A. , Partridge, L. , Serrano, M. , & Kroemer, G. . (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/0.1016/j.cell.2013.05.039
[2]Vitale, I. , Manic, G. , Maria, R. D. , Kroemer, G. , & Galluzzi, L. . (2017). Dna damage in stem cells. Molecular Cell, 66(3), 306. https://doi.org/10.1016/j.molcel.2017.04.006
[3]Mani, C. , Reddy, P. H. , & Palle, K. . (2019). Dna repair fidelity in stem cell maintenance, health, and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. https://doi.org/10.1016/j.bbadis.2019.03.017
[4]Goukassian, D. , Gad, F. , Yaar, M. , Eller, M. S. , & Gilchrest, B. A. . (2000). Mechanisms and implications of the age-associated decrease in dna repair capacity. The FASEB Journal, 14(10), 1325-1334. https://doi.org/10.1096/fj.14.10.1325
[5]Zhao, H., Ji, Q., Wu, Z. (2022). Destabilizing heterochromatin by APOE mediates senescence. Nat Aging 2, 303–316. https://doi.org/10.1038/s43587-022-00186-z
[13]Cai, Y. , Zhou, H. , Zhu, Y. , Sun, Q. , Ji, Y. , & Xue, A. , et al. (2020). Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. 細胞研究(英文版), 2020年30卷7期, 574-589頁, SCI SCIE MEDLINE ISTIC CSCD BP, the National Natural Science Foundation of China.
[14]García-Prat, L., Martínez-Vicente, M., Perdiguero, E. (2016). Autophagy maintains stemness by preventing senescence. Nature 529, 37–42. https://doi.org/10.1038/nature16187
[15]Cevenini, E. , Monti, D. , & Franceschi, C. . (2013). Inflamm-ageing. Current Opinion in Clinical Nutrition & Metabolic Care, 16(1), 14-20. https://doi.org/10.1097/MCO.0b013e32835ada13
[16]Childs, B., Gluscevic, M., Baker, D. (2017). Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16, 718–735. https://doi.org/10.1038/nrd.2017.116
[17]Malaquin, N. , Aurélie Martinez, & Rodier, F. . (2016). Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Experimental gerontology, 82, 39-49. https://doi.org/10.1016/j.exger.2016.05.010
[18]Kuilman, T. , Michaloglou, C. , Vredeveld, L. , Douma, S. , Doorn, R. V. , & Desmet, C. J. , et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133(6), 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039
[19]Dou, Z., Ghosh, K., Vizioli, M. (2017). Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406. https://doi.org/10.1038/nature24050
[20]Vizioli, M. G. , Liu, T. , Miller, K. N. , Robertson, N. A. , Gilroy, K. , & Lagnado, A. B. , et al. (2020). Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes & Development(5). https://doi.org/10.1101/GAD.331272.119
[21]Hood, D. A. , Memme, J. M. , Oliveira, A. N. , & Matthew, T. . (2018). Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annual Review of Physiology, 81(1), annurev-physiol-020518-114310-. https://doi.org/
10.1146/annurev-physiol-020518-114310
[22]Boengler, K. , Kosiol, M. , Mayr, M. , Schulz, R. , & Rohrbach, S. . (2017). Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. Journal of Cachexia Sarcopenia & Muscle. https://doi.org/10.1002/jcsm.12178
[23]C Bárcena, Mayoral, P. , & PM Quirós. (2018). Mitohormesis, an antiaging paradigm. International review of cell and molecular biology. https://doi.org/10.1016/bs.ircmb.2018.05.002
[24]Xiao, H. , Jedrychowski, M. P. , Schweppe, D. K. , Huttlin, E. L. , & Chouchani, E. T. . (2020). A quantitative tissue-specific landscape of protein redox regulation during aging. Cell, 180(5). https://doi.org/10.1016/j.cell.2020.02.012
[25]Zhang, Q., Wang, Z., Zhang, W. (2021). The memory of neuronal mitochondrial stress is inherited transgenerationally via elevated mitochondrial DNA levels. Nat Cell Biol 23, 870–880. https://doi.org/10.1038/s41556-021-00724-8
[26]Tomoyuki, Fukuda, Tomotake, & Kanki. (2018). Molecular mechanism and physiological functions of mitophagy in yeast. PLANT MORPHOLOGY, 30(1), 31-36. https://doi.org/10.5685/plmorphol.30.31
[27][1] Green, C. L. , Lamming, D. W. , & Fontana, L. . Molecular mechanisms of dietary restriction promoting health and longevity. Nature reviews. Molecular cell biology, 23(1), 56-73. https://doi.org/10.1038/s41580-021-00411-4
[28]Burkewitz, K. , Zhang, Y. , & Mair, W. . (2014). Ampk at the nexus of energetics and aging. Cell Metabolism, 20(1), 10-25. https://doi.org/10.1016/j.cmet.2014.03.002
[29]Albert, V. , & Hall, M. N. . (2015). Mtor signaling in cellular and organismal energetics. Current Opinion in Cell Biology, 33, 55-66. https://doi.org/10.1016/j.ceb.2014.12.001
[30]Chang, H. C. , & Guarente, L. . (2013). Sirt1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism, 25(3). https://doi.org/10.1016/j.tem.2013.12.001
[31]Partridge, L. , Alic, N. , Bjedov, I. , & Piper, M. D. W. . (2011). Ageing in drosophila: the role of the insulin/igf and tor signalling network. Experimental Gerontology, 46( 5), 376-381. https://doi.org/10.1016/j.exger.2010.09.003
[32]Martínez, G., Duran-Aniotz, C., Cabral-Miranda, F., Vivar, J.P. and Hetz, C. (2017), Endoplasmic reticulum proteostasis impairment in aging. Aging Cell, 16: 615-623. https://doi.org/10.1111/acel.12599
[33]JA Fafián-Labora, & O'Loghlen, A. . (2020). Classical and nonclassical intercellular communication in senescence and ageing. Trends in Cell Biology, 30(8). https://doi.org/10.1016/j.tcb.2020.05.003
[34]Horvath, S. , Haghani, A. , Peng, S. , Hales, E. N. , & Finno, C. J. . (2021). DNA methylation aging and transcriptomic studies in horses. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.03.11.435032
[35]Ghanam, A. R. , Xu, Q. , Ke, S. , Muhammad, A. , Cheng, Q. , & Song, X. . (2017). Shining the light on senescence associated lncrnas. Aging & Disease, 8(2), 149-161. https://doi.org/10.14336/AD.2016.0810
[36]Gilson, E., Géli, V. (2007). How telomeres are replicated. Nat Rev Mol Cell Biol 8, 825–838 https://doi.org/10.1038/nrm2259
[37]Chakravarti, D. , Labella, K. A. , & Depinho, R. A. . (2021). Telomeres: history, health, and hallmarks of aging. Cell, 184(2). https://doi.org/10.1016/j.cell.2020.12.028
[38]Bilaud, T. , Koering, C. E. , Binet-Brasselet, E. , Ancelin, K. , Pollice, A. , & Gasser, S. M. , et al. (1996). The telobox, a myb-related telomeric dna binding motif found in proteins from yeast, plants and human. Nucleic Acids Research, 24(7), 1294-1303. https://doi.org/10.1093/nar/gkw064
[39]Doksani, Y. , Wu, J. , De?Lange, T. , & Zhuang, X. . (2013). Super-resolution fluorescence imaging of telomeres reveals trf2-dependent t-loop formation. Cell, 155(2), 345-356. https://doi.org/10.1016/j.cell.2013.09.048
[40]Tamura, Y. , Takubo, K. , Aida, J. , Araki, A. , & Ito, H. . (2016). Telomere attrition and diabetes mellitus. Geriatrics & Gerontology International, 16, 66-74. https://doi.org/10.1111/ggi.12738
[41]Demanelis, K. , Jasmine, F. , Chen, L. S. , Chernoff, M. , & Pierce, B. L. . (2019). Determinants of telomere length across human tissues.
https://doi.org/10.1101/793406
[42]Saretzki, G. , & Von, Z. T. . (2003). Telomerase as a promising target for human cancer gene therapy. Drugs of Today, 39(4), 265-76. https://doi.org/10.1358/dot.2003.39.4.799403
[43]Sahin, E. , Colla, S. , Liesa, M. , Moslehi, J. , FL Müller, & Guo, M. , et al. (2011). Erratum: telomere dysfunction induces metabolic and mitochondrial compromise (nature (2011) 470 (359-365)). Nature Publishing Group(7355). https://doi.org/10.1038/NATURE10223
[44]Liu, GH., Barkho, B., Ruiz, S. (2011). Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225. https://doi.org/10.1038/nature09879
[45]Martel, J. , Ojcius, D. M. , Wu, C. Y. , Peng, H. H. , & Young, J. D. . (2020). Emerging use of senolytics and senomorphics against aging and chronic diseases. Medicinal Research Reviews, 48, 1-18. https://doi.org/10.1002/med.21702
[46]Schumacher, B. , Pothof, J. , Vijg, J. , & Hoeijmakers, J. . The central role of dna damage in the ageing process. Nature. https://doi.org/10.1038/s41586-021-03307-7
[47]Zhou, X. , Dou, Q. , Fan, G. , Zhang, Q. , & Gladyshev, V. N. . (2020). Beaver and naked mole rat genomes reveal common paths to longevity. Cell Reports, 32(4), 107949. https://doi.org/10.1016/j.celrep.2020.107949
[48]Tian, X. L. , & Li, Y. . (2014). Endothelial cell senescence and age-related vascular diseases. 遺傳學(xué)報:英文版(9), 11. https://doi.org/10.1016/j.jgg.2014.08.001
[49]Vanhoutte, P. M. . (1988). Aging and vascular responsiveness. Journal of Cardiovascular Pharmacology, 12(Supplement), S11-S18. https://doi.org/10.1097/00005344-198812081-00004
[50]Bonkowski, M. S. , Das, A. , Schultz, M. , Lu, Y. , Mitchell, J. , & Wu, L. , et al. (2018). Impairment of an endothelial nad+-h2s signaling network is a reversible cause of vascular aging. Innovation in Aging, 2(suppl_1), 388-388. https://doi.org/10.1093/geroni/igy023.1446
[51]Yusheng Cai, Wei Song, Jiaming Li. (2022) The landscape of aging, In Journal of SCIENCE CHINA Life Sciences, ISSN 1674-7305, https://doi.org/10.1007/s11427-022-2161-3.
[52]Magalh?Es, J. D. , Stevens, M. , & Thornton, D. . (2017). The business of anti-aging science. Trends in Biotechnology, S0167779917301713. https://doi.org/10.1016/j.tibtech.2017.07.004
[53]Miguel, Z. , Khoury, N. , Betley, M. J. , Lehallier, B. , Willoughby, D. , & Olsson, N. , et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature. https://doi.org/10.1038/s41586-021-04183-x
[54]Salas, I. H. , Burgado, J. , & Allen, N. J. . (2020). Glia: victims or villains of the aging brain?. Neurobiology of Disease, 143. https://doi.org/10.1016/j.nbd.2020.105008
[55]Morrison, J. H. , & Baxter, M. G. . (2012). The ageing cortical synapse: hallmarks and implications for cognitive decline. Nature Reviews Neuroscience, 13, 240-50. https://doi.org/10.1038/nrn3200
[56]Allen, N. J. , & Barres, B. A. . (2009). Glia - more than just brain glue. Nature, 457(7230), p.675-677. https://doi.org/10.1038/457675a
[57]Grabert, K. , Michoel, T. , Karavolos, M. H. , Clohisey, S. , Baillie, J. K. , & Stevens, M. P. , et al. Microglial brain region?dependent diversity and selective regional sensitivities to aging. Nature Neuroscience. https://doi.org/10.1038/nn.4222
[58]Gulshan, S. , & James, G. . (2006). Effect of aging on respiratory system physiology and immunology. Clinical Interventions in Aging, 1(3). https://doi.org/10.2147/ciia.2006.1.3.253
[59]Watson, J.K., Sanders, P., Dunmore, R. (2020). Distal lung epithelial progenitor cell function declines with age. Sci Rep 10, 10490. https://doi.org/10.1038/s41598-020-66966-y
[60]Yanai, H. , Shteinberg, A. , Porat, Z. , Budovsky, A. , & Fraifeld, V. E. . (2015). Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging, 7(9), 664-672. https://doi.org/10.18632/aging.100807
[61]Hansel, C. , Jendrossek, V. , & Klein, D. . (2020). Cellular senescence in the lung: the central role of senescent epithelial cells. International Journal of Molecular Sciences, 21(9), 3279. https://doi.org/10.3390/ijms21093279
[62]Donekal, S. , Venkatesh, B. A. , Yuan, C. L. , Liu, C. Y. , & Lima, J. A. C. . (2014). Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the multi-ethnic study of atherosclerosis (mesa) study. Circulation Cardiovascular Imaging, 7(2), 292. https://doi.org/10.1161/CIRCIMAGING.113.001073
[63]Vilchez, D., Saez, I. & Dillin, A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5, 5659. https://doi.org/10.1038/ncomms6659
[64]Zhang, Q. , Li, D. , Dong, X. , Zhang, X. , Liu, J. , & Peng, L. , et al. (2022). Lncdach1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. 中國科學(xué)(065-006). https://doi.org/0.1007/s11427-021-1982-8
[65]Costantino, S. , Paneni, F. , & Cosentino, F. . (2015). Targeting chromatin remodeling to prevent cardiovascular disease in diabetes. Current Pharmaceutical Biotechnology, 16(6). https://doi.org/10.2174/138920101606150407113644
[66]Lucia, C. D. , Gambino, G. , Petraglia, L. , Elia, A. , Komici, K. , & Femminella, G. D. , et al. (2018). Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circulation Heart Failure, 11(3), e004153. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004153
[67]Singh, M. , M.D. Jensen, Lerman, A. , Kushwaha, S. , & Kirkland, J. L. . (2016). Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: results of a pilot study. Journal of Frailty & Aging, 5(4), 204. https://doi.org/10.14283/jfa.2016.112
[68]Dragulescu, I. S. . (2014). Ivabradine in stable coronary artery disease without clinical heart failure. New England Journal of Medicine, 371, 1091-1099. https://doi.org/10.1056/NEJMoa1406430
[69]David Erlinge, Paul A. Gurbel, Stefan James. (2013). Prasugrel 5 mg in the Very Elderly Attenuates Platelet Inhibition But Maintains Noninferiority to Prasugrel 10 mg in Nonelderly Patients: The GENERATIONS Trial, A Pharmacodynamic and Pharmacokinetic Study in Stable Coronary Artery Disease Patients, Journal of the American College of Cardiology, Volume 62, Issue 7, Pages 577-583. https://doi.org/10.1016/j.jacc.2013.05.023.
[70]Mg, A. , Kq, A. , Lw, A. , Rh, B. , Tb, A. , & Edv, C. , et al. (2020). Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-st-elevation acute coronary syndrome (popular age): the randomised, open-label, non-inferiority trial - sciencedirect. https://doi.org/10.1016/S0140-6736(20)30325-1
[71]Wlosinska, M. , Nilsson, A. C. , Hlebowicz, J. , Fakhro, M. , & Lindstedt, S. . (2021). Aged garlic extract reduces il-6: a double-blind placebo-controlled trial in females with a low risk of cardiovascular disease. Evidence-based Complementary and Alternative Medicine, 2021(5), 1-9. https://doi.org/10.1155/2021/6636875
[72]Budoff, M. J. , Takasu, J. , Flores, F. R. , Niihara, Y. , Lu, B. , & Lau, B. H. , et al. (2004). Inhibiting progression of coronary calcification using aged garlic extract in patients receiving statin therapy: a preliminary study. Preventive Medicine, 39(5), 985-991. https://doi.org/10.1016/j.ypmed.2004.04.012
[73]Andersen, & Mads, J. . (2013). Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction the sildenafil and diastolic dysfunction after acute myocardial infarction (sidami) trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.112.000056
[74]Kalstad, A. A. , Myhre, P. L. , aake, K. , Tveit, S. H. , Schmidt, E. B. , & Smith, P. , et al. (2021). Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Lippincott Williams & WilkinsHagerstown, MD(6). https://doi.org/10.1161/CIRCULATIONAHA.120.052209
[75]Wu, J. , Wang, J. , Jiang, S. , Xu, J. , Di, Q. , & Zhou, C. , et al. (2013). The efficacy and safety of low intensity warfarin therapy in chinese elderly atrial fibrillation patients with high chads2 risk score. International Journal of Cardiology, 167(6), 3067-3068. https://doi.org/10.1016/j.ijcard.2012.11.078
[76]Okumura, K. , Akao, M. , Yoshida, T. , Kawata, M. , & Yamashita, T. . (2020). Low-dose edoxaban in very elderly patients with atrial fibrillation. New England Journal of Medicine, 383(18). https://doi.org/10.1056/NEJMoa2012883
[77]Pellicori P., Ferreira J.P., Mariottoni B.. (2020). Effects of spironolactone on serum markers of fibrosis in people at high risk of developing heart failure: rationale, design and baseline characteristics of a proof‐of‐concept, randomised, precision-medicine, prevention trial. The Heart OMics in AGing (HOMAGE) trial. Eur J Heart Fail, 22: 1711-1723. 2020. https://doi.org/10.1002/ejhf.1716
[78]Daniel K.R., Wells G., Stewart K.. (2009). Effect of aldosterone antagonism on exercise tolerance, Doppler diastolic function, and quality of life in older women with diastolic heart failure. Congestive Heart Failure, 15: 68-74. https://doi.org/10.1111/j.1751-7133.2009.00056.x
[79]Yoram, A. , Jonathan, L. , & Reisner, S. A. . (2009). Heart failure with a normal ejection fraction. BMJ, 338(2), 155. https://doi.org/10.1136/hrt.2005.074187
[80]Kitzman, D. W. , Herrington, D. M. , Brubaker, P. H. , Moore, J. B. , Eggebeen, J. , & Haykowsky, M. J. . (2013). Carotid arterial stiffness and its relationship to exercise intolerance in older patients with heart failure and preserved ejection fraction. Hypertension, 61(1), 112. https://doi.org/10.1161/HYPERTENSIONAHA.111.00163
[81]Gielert, & Stephan. (2012). Exercise training attenuates murf-1 expression in the skeletal muscle of patients with chronic heart failure independent of age. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.111.047381
[82]Paschalis V., Nikolaidis M.G., Theodorou A.A.. (2011) A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med Sci Sports Exercise, 2011, 43: 64-73. https://doi.org/10.1249/MSS.0b013e3181e91d90
[83][1] Ozasa, N. , Morimoto, T. , Bao, B. , Shioi, T. , & Kimura, T. . (2012). Effects of machine-assisted cycling on exercise capacity and endothelial function in elderly patients with heart failure. Circulation Journal, 76(8), 1889-94. https://doi.org/10.1253/circj.CJ-11-1113
[84]Mjsmm, A. , Mbnm, A. , Tjs, B. , Dwk, A. , Pb, C. , & Mjh, D. , et al. (2021). Left Atrial Stiffness Index Independently Predicts Exercise Intolerance and Quality of Life in Older Patients with Obese HFpEF. J Cardiac Failure, 28: 567-575. https://doi.org/10.1016/j.cardfail.2021.10.010
[85]Fujimoto, N. , Hastings, J. L. , Carrick-Ranson, G. , Shafer, K. M. , Shibata, S. , & Bhella, P. S. , et al. (2013). Cardiovascular effects of 1 year of alagebrium and endurance exercise training in healthy older individuals. Journal of the American College of Cardiology, 61(10), E1257-E1257. https://doi.org/10.1016/S0735-1097(13)61257-7
[86]Gail, A., Haldeman, and, Janet, & B., et al. (1999). Hospitalization of patients with heart failure: national hospital discharge survey, 1985 to 1995. Am Heart J, 137: 352-360. https://doi.org/10.1053/hj.1999.v137.95495
[87]Parikh, J. D. , Hollingsworth, K. G. , Kunadian, V. , Blamire, A. , & Macgowan, G. A. . (2016). Measurement of pulse wave velocity in normal ageing: comparison of vicorder and magnetic resonance phase contrast imaging. BMC Cardiovascular Disorders, 16(1), 1-7. https://doi.org/10.1186/s12872-016-0224-4
[88]Ua, A. , Ja, B. , Ja, C. , Pj, D. , & Al, E. . Supplemental selenium and coenzyme q10 reduce glycation along with cardiovascular mortality in an elderly population with low selenium status – a four-year, prospective, randomised, double-blind placebo-controlled trial - sciencedirect. Journal of Trace Elements in Medicine and Biology, 61: 126541. https://doi.org/10.1016/j.jtemb.2020.126541
[89]Lukas, S. , Waheed, K. A. , Arne, D. , Shafaat, H. , Rosa, S. , & Andre, T. , et al. (2019). High-intensity interval training modulates retinal microvascular phenotype and dna methylation of p66 shc gene: a randomized controlled trial (examin age). European Heart Journal(15), 41: 1514-1519. https://doi.org/10.1093/eurheartj/ehz196
[90]Molmen, H. E. , Wisloff, U. , Aamot, I. L. , Stoylen, A. , & Ingul, C. B. . (2012). Aerobic interval training compensates age related decline in cardiac function. Scandinavian cardiovascular journal: SCJ, 46(3), 163-171. https://doi.org/10.3109/14017431.2012.660192
[91]Friedman S.M., Mendelson D.A.. (2014). Epidemiology of fragility fractures. Clin Geriatric Med, 30: 175-181. https://doi.org/10.1016/j.cger.2014.01.001
[92]Ambrosi, T.H., Marecic, O., McArdle, A. (2021). Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262. https://doi.org/10.1038/s41586-021-03795-7
[93]Deng, P. , Yuan, Q. , Cheng, Y. , Li, J. , & Wang, C. Y. . (2021). Loss of kdm4b exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell, 28: 1057-1073.e7. https://doi.org/10.1016/j.stem.2021.01.010
[94]Josephson A.M., Bradaschia-Correa V., Lee S.. (2019). Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci USA, 116: 6995-7004. https://doi.org/0.1073/pnas.1810692116
[95]Hinton, P. S. , Nigh, P. , & Thyfault, J. . (2015). Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: a 12-month randomized, clinical trial. Bone, 79, 203-212. https://doi.org/10.1016/j.bone.2015.06.008
[96]Englund, D. A. , Zhang, X. , Aversa, Z. , & Lebrasseur, N. K. . (2021). Skeletal muscle aging, cellular senescence, and senotherapeutics: current knowledge and future directions. Mechanisms of Ageing and Development, 200, 111595. https://doi.org/10.1016/j.mad.2021.111595
[97]Fealy, C. E. , Grevendonk, L. , Hoeks, J. , & Hesselink, M. . (2021). Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging. Trends in Molecular Medicine, 27: 1033-1044. https://doi.org/10.1016/j.molmed.2021.07.013
[98]Brack, AS, Conboy, MJ, Roy, & S, et al. (2007). Increased wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317: 807-810. https://doi.org/10.1126/science.1144090
[99]Manisha, Sinha, Young, C. , Jang, Juhyun, & Oh, et al. (2014). Restoring systemic gdf11 levels reverses age-related dysfunction in mouse skeletal muscle. Science (New York, N.Y.), 344: 649-652. https://doi.org/10.1126/science.1251152
[100]Blanc R.S., Kallenbach J.G., Bachman J.F.. (2020). Inhibition of inflammatory CCR2 signaling promotes aged muscle regeneration and strength recovery after injury. Nat Commun, 11: 4167. https://doi.org/10.1038/s41467-020-17620-8
[101]Haydont V., Bernard B.A., Fortunel N.O.. (2019). Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics. Mech Ageing Dev, 177: 150-156. https://doi.org/10.1016/j.mad.2018.03.006
[102]Ge, Y. , & Fuchs, E. . (2018). Abstract b24: stem cell lineage infidelity drives wound repair and cancer. Cancer Research, 78(10 Supplement), 169: 636-650.e14. https://doi.org/10.1158/1538-7445.MOUSEMODELS17-B24
[103]Matsumura, H. , Mohri, Y. , Binh, N. T. , Morinaga, H. , Fukuda, M. , & Ito, M. , et al. (2016). Hair follicle aging is driven by transepidermal elimination of stem cells via col17a1 proteolysis. Science, 351(6273), aad4395. https://doi.org/10.1126/science.aad4395
[104]Rosenberg, A. , Rausser, S. , Ren, J. , Mosharov, E. , Sturm, G. M. , & Ogden, R. T. , et al. (2021). Quantitative mapping of human hair graying and reversal in relation to life stress. eLife, 10: e67437. https://doi.org/10.1101/2020.05.18.101964
[105]Laura, S. , Michela, B. , Michael, V. , & Marco, D. . (2021). The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Human Reproduction Update(2),28: 172-189. https://doi.org/10.1093/humupd/dmab038
[106]Gruenewald, D. A. . (2004). Aging and the male reproductive system. Encyclopedia of Endocrine Diseases, 122-125. https://doi.org/10.1016/B0-12-475570-4/00050-0
[107]Volkan, T. , & Kutluk, O. . (2019). Brca-related atm-mediated dna double-strand break repair and ovarian aging. Human Reproduction Update(1), 26: 43-57. https://doi.org/10.1093/humupd/dmz043
[108]Brighton, P. J. , Maruyama, Y. , Fishwick, K. , Vrljicak, P. , & Brosens, J. J. . (2017). Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife Sciences, 6: e31274. https://doi.org/10.7554/eLife.31274
[109]Yatsenko A.N., Turek P.J.. (2018). Reproductive genetics and the aging male. J Assist Reprod Genet, 35: 933-941. https://doi.org/10.1007/s10815-018-1148-y
[110]Wise, P. M. . (1998). Female reproductive aging. INTERDISCIPLINARY TOPICS IN GERONTOLOGY, 29. https://doi.org/10.1159/000061423
[111]Kalmbach, K. H. , Antunes, D. F. , Dracxler, R. C. , Knier, T. W. , Seth-Smith, M. L. , & Wang, F. , et al. (2013). Telomeres and human reproduction. Fertility & Sterility, 99(1), 23-29. https://doi.org/10.1016/j.fertnstert.2012.11.039
[112]Li, C. J. , Lin, L. T. , Tsai, H. W. , Chern, C. U. , Wen, Z. H. , & Wang, P. H. , et al. (2021). The molecular regulation in the pathophysiology in ovarian aging. Aging and Disease, 12(3), 934-949. https://doi.org/10.14336/AD.2020.1113
[113]Jlc, A. , Psb, C. , Kp, D. , Nsae, F. , Sk, E. , & Ddg, A. , et al. (2020). Mitochondria in ovarian aging and reproductive longevity. Ageing Research Reviews, 63: 101168. https://doi.org/10.1016/j.arr.2020.101168
[114]Lliberos, C. , Seng, H. L. , Mansell, A. , & Hutt, K. J. . (2021). The inflammasome contributes to depletion of the ovarian reserve during aging in mice. Frontiers in Cell and Developmental Biology, 8, 628473. https://doi.org/10.3389/fcell.2020.628473
[115]Cavalcante, M. B. , Saccon, T. D. , Nunes, A. , Kirkland, J. L. , & Masternak, M. M. . (2020). Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging, 12(3): 2711-2722. https://doi.org/10.18632/aging.102772
[116]Brighton, P. J. , Maruyama, Y. , Fishwick, K. , Vrljicak, P. , & Brosens, J. J. . (2017). Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife Sciences, 6: e31274. https://doi.org/10.7554/eLife.31274
[117]A, M. C. B. , A, L. A. , E, V. P. B. C. D. , A, H. C. , & A, B. R. Z. . (2015). Leydig cell aging and hypogonadism. Experimental Gerontology, 68, 87-91. https://doi.org/10.1016/j.exger.2015.02.014
[118]Saab, C. , Fta, D. , Mna, B. , Fsa, C. , & Msa, C. . (2022). Sodium arsenite accelerates d-galactose-induced aging in the testis of the rat: evidence for mitochondrial oxidative damage, nf-kb, jnk, and apoptosis pathways. Toxicology, 470, 153148. https://doi.org/10.1016/j.tox.2022.153148
[119]Zhao, H. , Ma, N. , Chen, Q. , You, X. , & Zhang, C. . (2019). Decline in testicular function in ageing rats: changes in the unfolded protein response and mitochondrial apoptotic pathway. Experimental Gerontology, 127, 110721. https://doi.org/10.1016/j.exger.2019.110721
[120]Wang, J. , Qian, X. , Qiang, G. , Lv, C. , Jie, X. , & Jin, H. , et al. (2018). Quercetin increases the antioxidant capacity of the ovary in menopausal rats and in ovarian granulosa cell culture in vitro. Journal of Ovarian Research, 11(1), 51. https://doi.org/10.1186/s13048-018-0421-0
[121]Reddy, P. , Ocampo, A. , Suzuki, K. , Luo, J. , Bacman, S. , & Williams, S. , et al. (2015). Selective elimination of mitochondrial mutations in the germline by genome editing. Cell, 161(3), 459-469. https://doi.org/10.1016/j.cell.2015.03.051
[122]Plessis, S. . (2021). The role of selected natural biomolecules in sperm production and functionality. Molecules, 26: 5196. https://doi.org/10.3390/molecules26175196
[123]Al-Hazaa, M. A. . (2021). Neurological alterations and testicular damages in aging induced by d-galactose and neuro and testicular protective effects of combinations of chitosan nanoparticles, resveratrol and quercetin in male mice. Coatings, 11:435. https://doi.org/10.3390/coatings11040435
[124]Branca, J. , Gulisano, M. , & Nicoletti, C. . (2019). Intestinal epithelial barrier functions in ageing. Ageing Research Reviews, 54, 100938. https://doi.org/10.1016/j.arr.2019.100938
[125]O'Toole, P. W. ,& Jeffery, I. B. . (2015). Gut microbiota and aging. Science, 350(6265), 1214-1215. https://doi.org/10.1126/science.aac8469
[126]Calcinotto, A. , Kohli, J. , Zagato, E. , Pellegrini, L. , Demaria, M. , & Alimonti, A. . (2019). Cellular senescence: aging, cancer, and injury. Physiological Reviews, 99(2), 1047-1078. https://doi.org/10.1152/physrev.00020.2018
[127]Eicke, Latz, Peter, & Duewell. (2018). Nlrp3 inflammasome activation in inflammaging. Seminars in immunology. 40: 61-73. https://doi.org/10.1016/j.smim.2018.09.001
[128]Mejia-Ramirez, E. , & Florian, M. C. . (2020). Understanding intrinsic hematopoietic stem cell aging. Haematologica(1), 105: 22-37. https://doi.org/10.3324/HAEMATOL.2018.211342
[129]Le, B. M. , Bourke, E. , Barry, H. K. , Morrison, C. G. , Warr, M. R. , & Alexander, D. , et al. (2010). Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell, 2010, 7: 174-185. https://doi.org/10.1016/j.stem.2010.06.014
[130]Ito, K. , & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular Cell Biology, 15: 243-256. https://doi.org/10.1038/nrm3772
[131]Grigoryan A., Guidi N., Senger K., Liehr T., Soller K., Marka G., Vollmer A., Markaki Y., Leonhardt H., Buske C.. (2018). LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol, 19: 189. https://doi.org/10.1093/humupd/dmz043
[132]Sezaki, M. , Hayashi, Y. , Wang, Y. , Johansson, A. , & Takizawa, H. (2020). Immuno-modulation of hematopoietic stem and progenitor cells in inflammation. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.585367
[133]Kurosu, H. , Yamamoto, M. , Clark, J. D. , Pastor, J. V. , Gurnani, P. , & Mcguinness, O. P. , et al. (2008). Suppression of aging in mice by the hormone klotho. , 309(5742), 1829-1833. https://doi.org/10.1126/science.1112766.Suppression
[134]Childs B.G., Gluscevic M., Baker D.J., Laberge R.M., Marquess D., Dananberg J., van Deursen J.M.. (2017). Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov, 16: 718-735. https://doi.org/10.1038/nrd.2017.116
[135]Chang, J. , Wang, Y. , Shao, L. , Laberge, R. M. , Demaria, M. , & Campisi, J. , et al. (2016). Clearance of senescent cells by abt263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine,22: 78-83. https://doi.org/10.1038/nm.4010
[136]Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422. https://doi.org/10.1038/s41467-017-00314-z
[137]Guerrero, A., Herranz, N., Sun, B. (2019). Cardiac glycosides are broad-spectrum senolytics.Nat Metab1, 1074–1088 https://doi.org/10.1038/s42255-019-0122-z
[138]Baar M.P., Brandt R.M.C., Putavet D.A., Klein J.D.D., Derks K.W.J., Bourgeois B.R.M., Stryeck S., Rijksen Y., van Willigenburg H., Feijtel D.A.. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell, 169: 132-147.e16. https://doi.org/10.1016/j.cell.2017.02.031
[139]Chen, T. , Wang, F. , Wei, S. , Nie, Y. , Zheng, X. , & Deng, Y. , et al. (2021). Fgfr/rack1 interacts with mdm2, promotes p53 degradation, and inhibits cell senescence in lung squamous cell carcinoma. 癌癥生物學(xué)與醫(yī)學(xué):英文版, 18(3), 10. https://doi.org/10.20892/j.issn.2095-3941.2020.0389
[140]Cai, Y., Zhou, H., Zhu, Y. (2020). Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30, 574–589 https://doi.org/10.1038/s41422-020-0314-9
[141]Covarrubias, A.J., Perrone, R., Grozio, A. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22, 119–141 . https://doi.org/10.1038/s41580-020-00313-x
[142]Wang G., Han T., Nijhawan D., Theodoropoulos P. (2014). P7c3 neuroprotective chemicals function by activating the rate-limiting enzyme in nad salvage. Cell, 158(6), 1324–1334. https://doi.org/10.1016/j.cell.2014.07.040
[143]Katsyuba E., Mottis A., Zietak M. (2018). De novo nad+ synthesis enhances mitochondrial function and improves health. Nature, 563: 354-359. https://doi.org/10.1038/s41586-018-0645-6
[144]Chini, E. N. , Chini, C. , Netto, J. , Oliveira, G. , & Schooten, W. V. . (2018). The pharmacology of cd38/nadase: an emerging target in cancer and diseases of aging. Trends in Pharmacological Sciences, 39(4): 424-436. https://doi.org/10.1016/j.tips.2018.02.001
[145]Hughes, R. O. , Bosanac, T. , Mao, X. , Engber, T. M. , Diantonio, A. , & Milbrandt, J. , et al. (2021). Small molecule sarm1 inhibitors recapitulate the sarm1 / phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Reports, 34(1), 108588.https://doi.org/10.1016/j.celrep.2020.108588
[146]Baur, J., Pearson, K., Price, N. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342. https://doi.org/10.1038/nature05354
[147]Tain, L. S. , Jain, C. , Nespital, T. , Froehlich, J. , & Partridge, L. . (2020). Longevity in response to lowered insulin signaling requires glycine n‐methyltransferase‐dependent spermidine production. Aging Cell, 19(12):e13043. https://doi.org/10.1111/acel.13043
[148]Harrison D.E., Strong R., Alavez S., Astle C.M., DiGiovanni J., Fernandez E., Flurkey K., Garratt M., Gelfond J.A.L., Javors M.A.. (2019). Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 18: e12898. https://doi.org/10.1111/acel.12898
[149]Kraig, E. , Linehan, L. A. , Liang, H. , Romo, T. Q. , Liu, Q. , & Wu, Y. , et al. (2018). A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: immunological, physical performance, and cognitive effects. Experimental Gerontology, 105: 53-69. https://doi.org/10.1016/j.exger.2017.12.026
[150]Dalal, M. , & Naima Jacobs-El. (2013). Subconjunctival palomid 529 in the treatment of neovascular age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 251(12), 2705-2709. https://doi.org/10.1007/s00417-013-2375-7
[151]Campbell, J. M. , Bellman, S. M. , MD Stephenson, & Lisy, K. . (2017). Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Research Reviews, 40, 31-44. https://doi.org/10.1016/j.arr.2017.08.003
[152]Cao Y., Nishihara R., Wu K., Wang M., Ogino S., Willett W.C., Spiegelman D., Fuchs C.S., Giovannucci E.L., Chan A.T.. (2016). Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncol, 2: 762-769. https://doi.org/10.1001/jamaoncol.2015.6396
[153]Daniel, M. , & Tollefsbol, T. O. . (2015). Epigenetic linkage of aging, cancer and nutrition. Journal of Experimental Biology, 218(1), 59-70. https://doi.org/10.1242/jeb.107110
[154]Shi, D., Xia, X., Cui, A. (2020). The precursor of PI(3,4,5)P3 alleviates aging by activating daf-18(Pten) and independent of daf-16. Nat Commun 11, 4496. https://doi.org/10.1038/s41467-020-18280-4
[155]Kapsiani, S., Howlin, B.J. (2021). Random forest classification for predicting lifespan-extending chemical compounds. Sci Rep 11, 13812. https://doi.org/10.1038/s41598-021-93070-6
[156]Peters, M., Joehanes, R., Pilling, L. (2015). The transcriptional landscape of age in human peripheral blood. Nat Commun 6, 8570. https://doi.org/10.1038/ncomms9570
[157]Atchison, L. , Abutaleb, N. O. , Snyder-Mounts, E. , Gete, Y. , & Truskey, G. A. . (2020). Ipsc-derived endothelial cells affect vascular function in a tissue-engineered blood vessel model of hutchinson-gilford progeria syndrome. Stem Cell Reports, 14(2). https://doi.org/10.1016/j.stemcr.2020.01.005
[158]The Tabula Muris Consortium. (2020). A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595. https://doi.org/10.1038/s41586-020-2496-1
[159]Lodato, M. A. , Rodin, R. E. , Bohrson, C. L. , Coulter, M. E. , Barton, A. R. , & Kwon, M. , et al. (2017). Aging and neurodegeneration are associated with increased mutations in single human neurons. Science, 359: 555-559. https://doi.org/10.1101/221960
[160]Gu K., Xu Y., Li H., Guo Z., Zhu S., Zhu S., Shi P., James T.D., Tian H., Zhu W.H..(2016). Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc,138: 5334-5340. https://doi.org/10.1021/jacs.6b01705
[161]Rao, A., Barkley, D., Fran?a, G.S. (2021). Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220. https://doi.org/10.1038/s41586-021-03634-9
[162]Kang W., Jin T., Zhang T., Ma S., Yan H., Liu Z., Ji Z., Cai Y., Wang S., Song M.. (2021) OUP accepted manuscript. Nucl Acids Res, 50: D1085-D1090. https://doi.org/10.1093/pubmed/fdw123