精品伊人久久大香线蕉,开心久久婷婷综合中文字幕,杏田冲梨,人妻无码aⅴ不卡中文字幕

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
AI之LLM/MLM:Nvidia官網人工智能大模型工具合集(大語言模型/多模態模型,文本生成/圖像生成/視頻生成)的簡介、使用方法、案例應用之詳細攻略

AI之LLM/MLM:Nvidia官網人工智能大模型工具合集(大語言模型/多模態模型,文本生成/圖像生成/視頻生成)的簡介、使用方法、案例應用之詳細攻略


Nvidia官網人工智能大模型工具合集的簡介

NVIDIA NIM APIs讓開發者可以輕松地調用NVIDIA的AI模型,這些模型經過優化可以在GPU上高效運行。所以總體來說,這個網站是NVIDIA展示他們AI模型庫的平臺,讓開發者能方便地評估和應用這些模型,在產品和服務中集成人工智能功能。

官網地址Try NVIDIA NIM APIs

1、網站主要功能包括:

>> 展示NVIDIA開源和內部訓練的不同領域的AI模型,如圖像生成、語言生成、視頻生成等。

>> 用戶可以在線試用這些模型,給出輸入看模型的輸出。

>> 提供每個模型的文檔和說明,了解它能做什么和如何調用。

>> 按照應用領域(如游戲、醫療等)和任務(如圖像識別、自然語言處理等)過濾模型。

>> 登陸后可能提供更高級功能,比如定制模型或將模型部署到用戶自己的服務器。

Nvidia官網人工智能大模型工具合集的使用方法

1、SDXL-Turbo的使用

生成圖像

NVIDIA NIM

快速生成文本到圖像的模型,可以在單次網絡評估中從文本提示中合成逼真的圖像。

Sci-Fi Image Generator Prompt: Quantum Flux, Cyborg Oasis, Alien Metropolis, Galactic Nexus, Celestial Portal, Techno-Organic Fusion, Astral Frontier, Nano-Symbiosis, Cosmic Arcadia, Hyperdimensional Nexus, Synthetic Nebula, Bio-Mechanical Citadel, Virtual Cosmos, Transcendent Echoes, Futuristic Megalopolis, Exoplanetary Eden, Augmented Reality Dreamscape, Interstellar Beacon, Cybernetic Utopia, Robotic Serenity.

2、GEMMA-7B的使用

聊天

語言生成

前沿文本生成模型,能夠理解文本、進行轉換和生成代碼。

T1、在線生成代碼

Certainly! Here's a prompt in English that you can use to generate Python machine learning code:
"Please create a Python script that implements a machine learning algorithm for classifying iris flowers based on the iris dataset. The script should include steps for data loading, preprocessing, model training, and evaluation using accuracy as the metric. Use a popular machine learning library such as scikit-learn, and provide comments in the code for clarity."

#Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

#Load the iris dataset
iris_data = pd.read_csv('iris.csv')

#Preprocess the data
X = iris_data.drop('species', axis=1)
y = iris_data['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#Train the logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)

#Evaluate the model
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('The accuracy of the model is:', accuracy)

T2、采用gemma-7b的API實現

from openai import OpenAI

client = OpenAI(
  base_url = "https://integrate.api.nvidia.com/v1",
  api_key = "$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC"
)

completion = client.chat.completions.create(
  model="google/gemma-7b",
  messages=[{"role":"user","content":"who are you?"}],
  temperature=0.5,
  top_p=1,
  max_tokens=1024,
  stream=True
)

for chunk in completion:
  if chunk.choices[0].delta.content is not None:
    print(chunk.choices[0].delta.content, end="")

3、LLAMA2-70B的使用

聊天

語言生成

前沿的大型語言人工智能模型,能夠根據提示生成文本和代碼。

T1、在線生成代碼

Please create a Python script that implements a machine learning algorithm for classifying iris flowers based on the iris dataset. The script should include steps for data loading, preprocessing, model training, and evaluation using accuracy as the metric. Use a popular machine learning library such as scikit-learn, and provide comments in the code for clarity.

#Import necessary libraries
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

#Load the iris dataset
iris = load_iris()
X = iris.data[:, :2]  #we only take the first two features.
y = iris.target

#Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#Scale the data using StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

#Train an SVM model on the scaled training data
svm = SVC(kernel='linear', C=1)
svm.fit(X_train_scaled, y_train)

#Evaluate the model on the test data
y_pred = svm.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.3f}")

#Use the trained model to make predictions on new data
new_data = [[5.1, 3.5]]
new_data = scaler.transform(new_data)
prediction = svm.predict(new_data)
print(f"Prediction: {prediction}")

T2、采用LLAMA2-70B的API實現

from openai import OpenAI

client = OpenAI(
  base_url = "https://integrate.api.nvidia.com/v1",
  api_key = "$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC"
)

completion = client.chat.completions.create(
  model="meta/llama2-70b",
  messages=[{"role":"user","content":"Please create a Python script that implements a machine learning algorithm for classifying iris flowers based on the iris dataset. The script should include steps for data loading, preprocessing, model training, and evaluation using accuracy as the metric. Use a popular machine learning library such as scikit-learn, and provide comments in the code for clarity."}],
  temperature=0.5,
  top_p=1,
  max_tokens=1024,
  stream=True
)

for chunk in completion:
  if chunk.choices[0].delta.content is not None:
    print(chunk.choices[0].delta.content, end="")

4、StabilityAI的Stable-Video-Diffusion使用

Stable-Video-Diffusion

圖像到視頻

NVIDIA NIM

穩定視頻擴散(SVD)是一種生成擴散模型,利用單個圖像作為條件幀來合成視頻序列。

5、MistralAI的Mistral-7B-Instruct-v0.2使用

Mistral-7B-Instruct-v0.2

語言生成

NVIDIA NIM

這個LLM能夠遵循指令,完成請求,并生成創造性的文本。

6、CodeLLAMA-70B的使用

聊天

代碼生成

7、LLAMA3-8B、LLAMA3-70B的使用

NVIDIA NIM | llama3-70b

NVIDIA NIM | llama3-8b

Nvidia官網人工智能大模型工具合集的案例應用

持續更新中……

本站僅提供存儲服務,所有內容均由用戶發布,如發現有害或侵權內容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
谷歌火力全開!新一代芯片TPU v5e炸場,大模型訓練飆升5倍,成本砍半
比英偉達H100快90%!最強大模型AI芯片來了,首搭141GB HBM3e
☆本地/筆記本/純 cpu 部署、使用類 gpt 大模型
成功本地部署LLama3后,我把用了一年的ChatGPT4徹底戒了!
Meta發布開源大模型Llama 3 超4000億參數對標GPT-4
30多個醫療大模型匯總:扁鵲、孫思邈、神農、皇帝、仲景、華佗大模型.........
更多類似文章 >>
生活服務
分享 收藏 導長圖 關注 下載文章
綁定賬號成功
后續可登錄賬號暢享VIP特權!
如果VIP功能使用有故障,
可點擊這里聯系客服!

聯系客服

主站蜘蛛池模板: 隆安县| 闸北区| 正阳县| 五台县| 西畴县| 巴楚县| 怀集县| 武邑县| 遵义市| 辛集市| 淅川县| 镇沅| 武穴市| 浑源县| 遵义市| 奎屯市| 庆阳市| 大石桥市| 天峨县| 昂仁县| 霞浦县| 镇远县| 天津市| 余江县| 始兴县| 澎湖县| 永济市| 南靖县| 隆安县| 邵东县| 元江| 搜索| 仙居县| 武陟县| 蕲春县| 石狮市| 淮南市| 玛纳斯县| 名山县| 云安县| 云霄县|