精品伊人久久大香线蕉,开心久久婷婷综合中文字幕,杏田冲梨,人妻无码aⅴ不卡中文字幕

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
6000星人氣深度學習資源!架構模型技巧全都有,圖靈獎得主LeCun推薦

暑假即將到來,不用來充電學習豈不是虧大了。

有這么一份干貨,匯集了機器學習架構模型的經典知識點,還有各種TensorFlowPyTorch的Jupyter Notebook筆記資源,地址都在,無需等待即可取用。

除了取用方便,這份名為Deep Learning Models的資源還尤其全面

針對每個細分知識點的介紹還尤其全面的,比如在卷積神經網絡部分,作者就由淺及深分別介紹了AlexNet、VGG、ResNet等。

干貨發布后,在GitHub短時間獲得了6000+顆星星,迅速聚集起大量人氣。

圖靈獎得主、AI大牛Yann LeCun也強烈推薦,夸贊其為一份不錯的PyTorch和TensorFlow Jupyter筆記本推薦!

這份資源的作者來頭也不小,他是威斯康星大學麥迪遜分校的助理教授Sebastian Raschka,此前還編寫過Python Machine Learning一書。

話不多說現在進入干貨時間,好東西太多篇幅較長,記得先碼后看

原資源地址:
https://github.com/rasbt/deeplearning-models

干貨來也

1、多層感知機

多層感知機簡稱MLP,是一個打基礎的知識點:

多層感知機:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

增加了Dropout部分的多層感知機:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

具備批標準化的多層感知機:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

從零開始了解多層感知機與反向傳播:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb

2、卷積神經網絡

在卷積神經網絡這一部分,細碎的知識點很多,包含基礎概念、全卷積網絡、AlexNet、VGG等多個內容。來看干貨:

卷積神經網絡基礎入門:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

卷積神經網絡的初始化:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

想用等效卷積層替代全連接的話看看下面這個:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

全卷積神經網絡基礎知識在這里:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

Alexnet網絡模型在CIFAR-10數據集上的實現:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

關于VGG模型,你可能需要了解VGG-16架構:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

在CelebA上訓練的VGG-16性別分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

VGG19網絡架構:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

關于2015年被提出的經典CNN模型ResNet,最厲害的資源也在這了。

比如ResNet和殘差塊:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

用MNIST數據集訓練的ResNet-18數字分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

用人臉屬性數據集CelebA訓練的ResNet-18性別分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

在MNIST上訓練的ResNet-34:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

在CelebA上訓練ResNet-34性別分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

在MNIST上訓練的ResNet-50數字分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

在CelebA上訓練ResNet-50性別分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

在CelebA上訓練ResNet-101性別分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

在CelebA上訓練ResNet-152性別分類器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

CIFAR-10分類器中的網絡:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

3、指標學習

具有多層感知機的孿生網絡:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb

4、自編碼器

在自編碼器這一部分,同樣有很多細分類別需要學習,注意留出充足時間學習這一內容。

自編碼器的種類很多,比如全連接自編碼器:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

還有卷積自編碼器。比如這個反卷積(轉置卷積)卷積自編碼器:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

沒有進行池化的反卷積自編碼器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb

有最近鄰插值的卷積自編碼器:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

在CelebA上訓練過的有最近鄰插值的卷積自編碼器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

在谷歌涂鴉數據集Quickdraw上訓練過的有最近鄰插值的卷積自編碼器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

變分自編碼器也是自編碼器中的重要一類:

變分自編碼器基礎介紹:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

卷積變分自編碼器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

最后,還有條件變分自編碼器也需要關注。比如在重建損失中有標簽的:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

沒有標簽的:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

有標簽的條件變分自編碼器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

沒有標簽的條件變分自編碼器:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

5、生成對抗網絡(GAN)

在MNIST上的全連接GAN:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

在MNIST上訓練的條件GAN:

TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

用Label Smoothing方法優化過的條件GAN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

6、循環神經網絡

針對多對一的情緒分析和分類問題中,包括簡單單層RNN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

壓縮序列的簡單單層RNN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

RNN和LSTM技術:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

基于GloVe預訓練詞向量的有LSTM核的RNN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb

GRU核的RNN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

多層雙向RNN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

一對多/序列到序列的生成新文本的字符RNN:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

7、有序回歸

針對不同場景,有三類有序回歸干貨:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

8、方法和技巧

關于周期性學習速率,這里也有一份小技巧:

PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

9、PyTorch Workflow和機制

用自定義數據集加載PyTorch,這里也有一些攻略:

比如用CelebA中的人臉圖像:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

比如用街景數據集:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb

比如用Quickdraw:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

在訓練和預處理環節,標準化圖像可參考:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

圖像信息樣本:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

有文本文檔的Char-RNN :

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

在CelebA上訓練的VGG-16性別分類器的并行計算等:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

10、TensorFlow Workflow與機制

這是這份干貨中的最后一個大分類,包含自定義數據集、訓練和預處理兩大部分。

內容包括:

將NumPy NPZ用于小批量訓練圖像數據集
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

用HDF5文件存儲圖像數據集,用于小規模訓練
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

用輸入pipeline從TFRecords文件中讀取數據
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

TensorFlow數據集API
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb

如果需要從TensorFlow Checkpoint文件和NumPy NPZ Archive中存儲和加載訓練模型,可移步:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

11、傳統機器學習

最后,如果你是從零開始入門,可以從傳統機器學習看起。包括感知機、邏輯回歸和Softmax回歸等。

感知機部分TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

PyTorch版筆記
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

邏輯回歸部分也是一樣:

邏輯回歸部分部分TensorFlow版Jupyter Notebooks
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

PyTorch版筆記
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

Softmax回歸,也稱為多項邏輯回歸:

Softmax回歸部分部分TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

PyTorch版筆記
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

傳送門

這份干貨滿滿的資源到這里就結束了,再次放上原文傳送門:

https://github.com/rasbt/deeplearning-models

超強干貨,記得收藏~

本站僅提供存儲服務,所有內容均由用戶發布,如發現有害或侵權內容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
Yann LeCun推薦的Github深度學習入門教程,2天1500 星,含80個TensorFlo...
資源 | 數十種TensorFlow實現案例匯集:代碼 筆記
TensorFlow Eager圖文教程(附9張圖解和Jupyter)
GitHub|2017年 倫敦深度學習研討會資料庫
FaceBook開源PyTorch3D:基于PyTorch的新3D計算機視覺庫
16個GitHub收藏和貢獻率最高的深度學習框架
更多類似文章 >>
生活服務
分享 收藏 導長圖 關注 下載文章
綁定賬號成功
后續可登錄賬號暢享VIP特權!
如果VIP功能使用有故障,
可點擊這里聯系客服!

聯系客服

主站蜘蛛池模板: 桑植县| 惠安县| 微山县| 澄江县| 洱源县| 郓城县| 通辽市| 阳谷县| 古交市| 平果县| 辽宁省| 襄汾县| 恩平市| 大兴区| 武陟县| 庆城县| 湾仔区| 平陆县| 桓台县| 两当县| 牙克石市| 壶关县| 宜黄县| 武定县| 张北县| 永春县| 龙游县| 远安县| 浪卡子县| 综艺| 兰西县| 铜鼓县| 新兴县| 九龙县| 洛浦县| 时尚| 内丘县| 通榆县| 朝阳县| 仙居县| 肃北|